算法系列15天速成——第三天 七大经典排序【下】

今天跟大家聊聊最后三种排序: 直接插入排序,希尔排序和归并排序。

 

直接插入排序:

       这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,

   扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的。

       最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,

   第五张牌又是3,狂喜,哈哈,一门炮就这样产生了。

 

     怎么样,生活中处处都是算法,早已经融入我们的生活和血液。

     

     下面就上图说明:

             

      看这张图不知道大家可否理解了,在插入排序中,数组会被划分为两种,“有序数组块”和“无序数组块”,

     

      对的,第一遍的时候从”无序数组块“中提取一个数20作为有序数组块。

              第二遍的时候从”无序数组块“中提取一个数60有序的放到”有序数组块中“,也就是20,60。

              第三遍的时候同理,不同的是发现10比有序数组的值都小,因此20,60位置后移,腾出一个位置让10插入。

                      然后按照这种规律就可以全部插入完毕。

 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace InsertSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            List<int> list = new List<int>() { 3, 1, 2, 9, 7, 8, 6 };

            Console.WriteLine("排序前:" + string.Join(",", list));

            InsertSort(list);

            Console.WriteLine("排序后:" + string.Join(",", list));
        }

        static void InsertSort(List<int> list)
        {
            //无须序列
            for (int i = 1; i < list.Count; i++)
            {
                var temp = list[i];

                int j;

                //有序序列
                for (j = i - 1; j >= 0 && temp < list[j]; j--)
                {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

 

希尔排序:

        观察一下”插入排序“:其实不难发现她有个缺点:

              如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘,

       每次插入都要移动位置,此时插入排序的效率可想而知。

   

      shell根据这个弱点进行了算法改进,融入了一种叫做“缩小增量排序法”的思想,其实也蛮简单的,不过有点注意的就是:

  增量不是乱取,而是有规律可循的。

首先要明确一下增量的取法:

      第一次增量的取法为: d=count/2;

      第二次增量的取法为:  d=(count/2)/2;

      最后一直到: d=1;

看上图观测的现象为:

        d=3时:将40跟50比,因50大,不交换。

                   将20跟30比,因30大,不交换。

                   将80跟60比,因60小,交换。

        d=2时:将40跟60比,不交换,拿60跟30比交换,此时交换后的30又比前面的40小,又要将40和30交换,如上图。

                   将20跟50比,不交换,继续将50跟80比,不交换。

        d=1时:这时就是前面讲的插入排序了,不过此时的序列已经差不多有序了,所以给插入排序带来了很大的性能提高。

 

既然说“希尔排序”是“插入排序”的改进版,那么我们就要比一下,在1w个数字中,到底能快多少?

 

下面进行一下测试:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;

namespace ShellSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            //5次比较
            for (int i = 1; i <= 5; i++)
            {
                List<int> list = new List<int>();

                //插入1w个随机数到数组中
                for (int j = 0; j < 10000; j++)
                {
                    Thread.Sleep(1);
                    list.Add(new Random((int)DateTime.Now.Ticks).Next(10000, 1000000));
                }

                List<int> list2 = new List<int>();
                list2.AddRange(list);

                Console.WriteLine("\n第" + i + "次比较:");

                Stopwatch watch = new Stopwatch();

                watch.Start();
                InsertSort(list);
                watch.Stop();

                Console.WriteLine("\n插入排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list.Take(10).ToList()));

                watch.Restart();
                ShellSort(list2);
                watch.Stop();

                Console.WriteLine("\n希尔排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list2.Take(10).ToList()));

            }
        }

        ///<summary>
/// 希尔排序
///</summary>
///<param name="list"></param>
        static void ShellSort(List<int> list)
        {
            //取增量
            int step = list.Count / 2;

            while (step >= 1)
            {
                //无须序列
                for (int i = step; i < list.Count; i++)
                {
                    var temp = list[i];

                    int j;

                    //有序序列
                    for (j = i - step; j >= 0 && temp < list[j]; j = j - step)
                    {
                        list[j + step] = list[j];
                    }
                    list[j + step] = temp;
                }
                step = step / 2;
            }
        }

        ///<summary>
/// 插入排序
///</summary>
///<param name="list"></param>
        static void InsertSort(List<int> list)
        {
            //无须序列
            for (int i = 1; i < list.Count; i++)
            {
                var temp = list[i];

                int j;

                //有序序列
                for (j = i - 1; j >= 0 && temp < list[j]; j--)
                {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

截图如下:

 

看的出来,希尔排序优化了不少,w级别的排序中,相差70几倍哇。

 

归并排序:

       个人感觉,我们能容易看的懂的排序基本上都是O (n^2),比较难看懂的基本上都是N(LogN),所以归并排序也是比较难理解的,尤其是在代码

 编写上,本人就是搞了一下午才搞出来,嘻嘻。

 

首先看图:

归并排序中中两件事情要做:

            第一: “分”,  就是将数组尽可能的分,一直分到原子级别。

            第二: “并”,将原子级别的数两两合并排序,最后产生结果。

代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MergeSort
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] array = { 3, 2, 1, 8, 9, 0 };

            MergeSort(array, new int[array.Length], 0, array.Length - 1);

            Console.WriteLine(string.Join(",", array));
        }

        ///<summary>
/// 数组的划分
///</summary>
///<param name="array">待排序数组</param>
///<param name="temparray">临时存放数组</param>
///<param name="left">序列段的开始位置,</param>
///<param name="right">序列段的结束位置</param>
        static void MergeSort(int[] array, int[] temparray, int left, int right)
        {
            if (left < right)
            {
                //取分割位置
                int middle = (left + right) / 2;

                //递归划分数组左序列
                MergeSort(array, temparray, left, middle);

                //递归划分数组右序列
                MergeSort(array, temparray, middle + 1, right);

                //数组合并操作
                Merge(array, temparray, left, middle + 1, right);
            }
        }

        ///<summary>
/// 数组的两两合并操作
///</summary>
///<param name="array">待排序数组</param>
///<param name="temparray">临时数组</param>
///<param name="left">第一个区间段开始位置</param>
///<param name="middle">第二个区间的开始位置</param>
///<param name="right">第二个区间段结束位置</param>
        static void Merge(int[] array, int[] temparray, int left, int middle, int right)
        {
            //左指针尾
            int leftEnd = middle - 1;

            //右指针头
            int rightStart = middle;

            //临时数组的下标
            int tempIndex = left;

            //数组合并后的length长度
            int tempLength = right - left + 1;

            //先循环两个区间段都没有结束的情况
            while ((left <= leftEnd) && (rightStart <= right))
            {
                //如果发现有序列大,则将此数放入临时数组
                if (array[left] < array[rightStart])
                    temparray[tempIndex++] = array[left++];
                else
                    temparray[tempIndex++] = array[rightStart++];
            }

            //判断左序列是否结束
            while (left <= leftEnd)
                temparray[tempIndex++] = array[left++];

            //判断右序列是否结束
            while (rightStart <= right)
                temparray[tempIndex++] = array[rightStart++];

            //交换数据
            for (int i = 0; i < tempLength; i++)
            {
                array[right] = temparray[right];
                right--;
            }
        }
    }
}

结果图:

 

ps: 插入排序的时间复杂度为:O(N^2)

     希尔排序的时间复杂度为:平均为:O(N^3/2)

                                       最坏: O(N^2)

     归并排序时间复杂度为: O(NlogN)

                空间复杂度为:  O(N)

时间: 2024-12-12 17:11:06

算法系列15天速成——第三天 七大经典排序【下】的相关文章

算法系列15天速成 第三天 七大经典排序【下】_相关技巧

直接插入排序:        这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,    扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的.        最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,    第五张牌又是3,狂喜,哈哈,一门炮就这样产生了.      怎么样,生活中处处都是算法,早已经融入我们的生活和血液.       

算法速成(三)七大经典排序之直接插入排序、希尔排序和归并排序

直接插入排序: 这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一 手乱牌时,我们就要按照大小梳理扑克,30秒后, 扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的. 最左一张牌是3,第二张牌是5,第三张牌又是3, 赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去, 第五张牌又是3, 狂喜,哈哈,一门炮就这样产生了. 怎么样,生活中处处都是算法,早已经融入我们的生活和 血液. 下面就上图说明: 看这张图不知道大家可否理解了,在插入排

算法系列15天速成——第十五天 图【下】(大结局)

一: 最小生成树 1. 概念     首先看如下图,不知道大家能总结点什么.     对于一个连通图G,如果其全部顶点和一部分边构成一个子图G1,当G1满足:        ① 刚好将图中所有顶点连通.②顶点不存在回路.则称G1就是G的"生成树".            其实一句话总结就是:生成树是将原图的全部顶点以最小的边连通的子图,这不,如下的连通图可以得到下面的两个生成树.        ② 对于一个带权的连通图,当生成的树不同,各边上的权值总和也不同,如果某个生成树的权值最小,

算法系列15天速成——第五天 五大经典查找【中】

    大家可否知道,其实查找中有一种O(1)的查找,即所谓的秒杀.   哈希查找:       对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成 固有思维了.大家一定要知道"哈希"中的对应关系.      比如说: "5"是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5" 和"2"就建立一种对应关系,这种关系就是所谓的"哈

算法系列15天速成——第十三天 树操作【下】

   今天说下最后一种树,大家可否知道,文件压缩程序里面的核心结构,核心算法是什么?或许你知道,他就运用了赫夫曼树. 听说赫夫曼胜过了他的导师,被认为"青出于蓝而胜于蓝",这句话也是我比较欣赏的,嘻嘻.   一  概念     了解"赫夫曼树"之前,几个必须要知道的专业名词可要熟练记住啊.       1: 结点的权             "权"就相当于"重要度",我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁

算法系列15天速成 第五天 五大经典查找【中】_相关技巧

哈希查找:     对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成固有思维了.大家一定要知道"哈希"中的对应关系.     比如说: "5"是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个"2",那么此时的"5"和"2"就建立一种对应关系,这种关系就是所谓的"哈希关系",在实际应用中也就形成了"2"是key,&qu

算法系列15天速成——第四天 五大经典查找【上】

在我们的生活中,无处不存在着查找,比如找一下班里哪个mm最pl,猜一猜mm的芳龄....... 对的这些都是查找.   在我们的算法中,有一种叫做线性查找. 分为:顺序查找.         折半查找.   查找有两种形态: 分为:破坏性查找,   比如有一群mm,我猜她们的年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了.                             哥不找23+的,所以此种查找破坏了原来的结构.        非破坏性查找,

算法系列15天速成——第十三天 树操作【下】_相关技巧

听说赫夫曼胜过了他的导师,被认为"青出于蓝而胜于蓝",这句话也是我比较欣赏的,嘻嘻. 一  概念     了解"赫夫曼树"之前,几个必须要知道的专业名词可要熟练记住啊.     1: 结点的权             "权"就相当于"重要度",我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁重要,谁不重要.     2: 路径              树中从"一个结点"到"另一个结点

算法系列15天速成——第七天 线性表【上】

原文:算法系列15天速成--第七天 线性表[上]   人活在社会上不可能孤立,比如跟美女有着千丝万缕的关系,有的是一对一,有的是一对多,有的是多对多. 哈哈,我们的数据也一样,存在这三种基本关系,用术语来说就是: <1>  线性关系. <2>  树形关系. <3>  网状关系.   一: 线性表       1 概念:                  线性表也就是关系户中最简单的一种关系,一对一.                   如:学生学号的集合就是一个线性表.