Beauty and Big Data

Beauty and big data

Big data has made a lasting mark on the beauty industry in recent years, forever changing the way brands and retailers interact with their customers. These days, you can look into a mirror and it will look right back at you, analyze your features, reference your preferences and even read your emotions, thanks to several companies that are innovating in this space. Many beauty franchises generate up to 15% of their revenue from product sales, which means that putting the right product in front of the right customer at the right time is crucial. 1 Thankfully, the beauty retail industry has a tremendous amount of data to work with – all managed and stored in the cloud. This data allows retailers to not only manage and streamline operations, it enables them to meet soaring customer demands for a personalized in-store experience.

A turning point

One such area making big strides in the beauty industry involves point-of-sale (POS) displays. Previously used for aesthetic purposes and strictly offline marketing, these displays were engineered to showcase a brand's products in an eye-catching and memorable manner, eventually enticing a customer to purchase said products. A recent study found that eight out of 10 marketers rank point-of-sale as the most influential marketing channel for influencing shopper purchasing decisions. 2 Today, brands and retailers have upped the ante when it comes to POS displays, now investing their resources in creating displays that not only broadcast information, but also collect it. For example, UK-based retailer Boots has multiple touch points for its in-store displays that not only give customers information about certain products, while also tracking each products' popularity and weighting it against inventory data stored in the cloud.

Ready for its close up

Beauty brands and retailers have also integrated video recording and sharing technology in their in-store operations. In partnership with digital imaging software company MemoMi, US-based luxury retailer Neiman Marcus recently debuted its Memory Mirror in its beauty department. This "magic mirror" records customers as they are made up by shop assistants, and saves the video for them to watch later. This enables shoppers to reference a personal video tutorial when they use their purchased products themselves. Conversely, the Memory Mirror also helps brands record their each customers' specific preferences, and determine their most popular products. 3

Blurred lines

Augmented reality (AR) now plays a major part in cosmetics brands' marketing strategies, thanks to its ability to enhance videos and images to give customers a sense of how different products would look on them, without going through all the rigmarole of actually putting on makeup and washing it off. Global cosmetics retailer Sephora has an app with a feature called Virtual Artist, which enables users to "try on" different shades of lipstick and eyeshadow, as well as false eyelashes. 4

Silver linings

While there's no doubting bid data's permeation of the beauty industry, it must be considered that all said data must be paired with a reliable and trustworthy cloud storage solutions provider in order to maximize its full potential. Integrating the cloud into infrastructure from the onset will ensure a secure, scalable and agile way to access all that data and leverage it to provide customers with a personalized and engaging way to experience different beauty products.

1https://www.franchisehelp.com/industry-reports/beauty-industry-report/
2http://www.retailtimes.co.uk/point-sale-influential-tv-radio-press-advertising-new-report-finds/
3http://www.retaildive.com/news/how-neiman-marcus-is-turning-technology-innovation-into-a-core-value/436590/
4https://sephoravirtualartist.com/landing_3.0.php?country=US&lang=en&x=

时间: 2025-01-01 15:05:55

Beauty and Big Data的相关文章

codeblocks 使用汇总

codeblocks 使用汇总 集成本帖提到的所有补丁,非官方,双编译器(VC9.MinGW4.4.3)绿色版,解压密码:csdn   >> http://portablecb.googlecode.com/files/LoveDEV.7z<< 由于集成VC9,所以请试用后24小时内删除! 官方公告:http://forums.codeblocks.org/index.php/topic,12156.0.html 这段时间比较忙,主要是学习Code::Blocks的代码,并且为其提

数据库组件 Hxj.Data (二十七)(字段组合更新)

Hxj.Data V1.5.1版本开始支持字段组合更新. 例如:update table set a=b+c update table set a=a+1 (+.-.*./.%)依次类推. 下面将举具体的例子.(例子只是为了测试效果,没有实际意义) 例一. DbSession.Default.Update<Products>(Products._.UnitPrice, Products._.ReorderLevel + Products._.UnitPrice, Products._.Prod

实战:MySQL Sending data导致查询很慢的问题详细分析

这两天帮忙定位一个mysql查询很慢的问题,定位过程综合各种方法.理论.工具,很有代表性,分享给大家作为新年礼物:) [问题现象] 使用sphinx支持倒排索引,但sphinx从mysql查询源数据的时候,查询的记录数才几万条,但查询的速度非常慢,大概要4~5分钟左右 [处理过程] 1)explain 首先怀疑索引没有建好,于是使用explain查看查询计划,结果如下: 从explain的结果来看,整个语句的索引设计是没有问题的,除了第一个表因为业务需要进行整表扫描外,其它的表都是通过索引访问

服务器-WIN2003下安装Data Protector Express 4.00sp1 出错

问题描述 WIN2003下安装Data Protector Express 4.00sp1 出错 安装环境:WINDOWS 2003 SERVER 安装软件:Data Protector Express 4.00sp1(HP 以前发布的备份软件DPE,现在HP已经不代理这个软件了) 出现问题:在一台WIN 2003的主服务器上,原来的DPE运行的好好的,有次清理病毒后,DPE软件的备份功能老是不能启动服务,DPE上的擦除,格式化,识别功能都没问题的,后来决定重装DPE. 用DPE自带的卸载功能卸

obj-c编程15[Cocoa实例04]:基于Core Data的多文档程序示例[未完待续]

    上一个例子我们使用的模式数据实际上是基于一个Person数组,现在我们看一下如何使用Cocoa中的Core Data框架支持,几乎不用写一行代码,完成模式数据的建立.     我们这里模式的元素使用的是Car,其属性直接在Xcode中设置: 可以看到Car类型含有6中不同属性.接下来删除窗口中的文本控件,添加Array Controller控件,并将其Managed Object Context与File's Owner的managedObjectContext绑定.如下图: 将控制器的

ajsx{} java action-$ajsx{}方法的data属性怎么写

问题描述 $ajsx{}方法的data属性怎么写 解决方案 键名称包含特殊字符用引号扩起..或者用serialize方法也行,$('#表单id').serialize() data:{""filter.type"":""xxxx""filter.telphone"":""xxx""}//or $('#表单id').serialize() 解决方案二: 给个id呗,方便

Flex Data Binding详解

Data BindIng简单的说就是当绑定源属性发生变化时,Flex 会把绑定源变化后属性的值赋给目的物的属性.做到了数据同步. Data BindIng 什么时候发生: 1.在绑定源属性值发生改变时发生. 2.在绑定源发出initialize事件时绑定发生一次. 让属性具有可绑定功能: 一般的,只要在属性前加上 [Bindable] 或 [Bindable(event="eventname")] 元标记即可 注意: 如果没有标出触发绑定的事件,正如[Bindable],Flex会自动

数据挖掘-如何将.names文件和.data文件的内容合并转换成arff或者csv

问题描述 如何将.names文件和.data文件的内容合并转换成arff或者csv 在UCI中下载的数据都是.names 和 .data 我想导入weka中进行分析 怎么使用呀? 解决方案 如何将PPT文件转换成PDF文件 解决方案二: 好像有个File. Replace 方法 剩下的应该没问题了

In-Stream Big Data Processing译文:流式大数据处理

转自:http://blog.csdn.net/idontwantobe/article/details/25938511  @猪头饼 原文:http://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/ 作者:Ilya Katsov 相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twi