C++ typeid关键字详解

typeid关键字


注意:typeid是操作符,不是函数。这点与sizeof类似)

运行时获知变量类型名称,可以使用 typeid(变量).name()

需要注意不是所有编译器都输出”int”、”float”等之类的名称,对于这类的编译器可以这样使用

int ia = 3;
if(typeid(ia) == typeid(int))
{
    cout <<"int" <<endl;
}

RTTI(Run-Time Type Identification)-运行时类型识别



在揭开typeid神秘面纱之前,我们先来了解一下RTTI(Run-Time Type Identification,运行时类型识别),它使程序能够获取由基指针或引用所指向的对象的实际派生类型,即允许“用指向基类的指针或引用来操作对象”的程序能够获取到“这些指针或引用所指对象”的实际派生类型。

在C++中,为了支持RTTI提供了两个操作符:dynamic_casttypeid

  • dynamic_cast允许运行时刻进行类型转换,从而使程序能够在一个类层次结构中安全地转化类型,与之相对应的还有一个非安全的转换操作符static_cast,因为这不是本文的讨论重点,所以这里不再详述,感兴趣的可以自行查阅资料。
  • typeid是C++的关键字之一,等同于sizeof这类的操作符。typeid操作符的返回结果是名为type_info的标准库类型的对象的引用(在头文件typeinfo中定义,稍后我们看一下vs和gcc库里面的源码),它的表达式有下图两种形式。

实现机制与使用技巧


type_info类对象类别判别


对象类别判别分析



如果表达式的类型是类类型且至少包含有一个虚函数,则typeid操作符返回表达式的动态类型,需要在运行时计算;
否则,typeid操作符返回表达式的静态类型,在编译时就可以计算。

ISO C++标准并没有确切定义type_info,它的确切定义编译器相关的,但是标准却规定了其实现必需提供如下四种操作(在之后的章节中我会来分析type_info类文件的源码)

运算 描述
t1 == t2 如果两个对象t1和t2类型相同,则返回true;否则返回false
t1 != t2 如果两个对象t1和t2类型不同,则返回true;否则返回false
t.name() 返回类型的C-style字符串,类型名字用系统相关的方法产生1
t1.before(t2) 返回指出t1是否出现在t2之前的bool值

type_info类提供了public虚 析构函数,以使用户能够用其作为基类。它的默认构造函数和拷贝构造函数及赋值操作符都定义为private,所以不能定义或复制type_info类型的对象。程序中创建type_info对象的唯一方法是使用typeid操作符(由此可见,如果把typeid看作函数的话,其应该是type_info的 友元)。type_info的name成员函数返回C-style的字符串,用来表示相应的类型名,但务必注意这个返回的类型名与程序中使用的相应类型名并不一定一致(往往如此,见后面的程序),这具体由编译器的实现所决定的,标准只要求实现为每个类型返回唯一的字符串。

type_info类源代码



使用sudo find / -name typeinfo.h来查找源码

#ifndef _TYPEINFO
#define _TYPEINFO

#include <exception>

namespace std
{

  class type_info
  {
  public:

    virtual ~type_info();
    { return __name[0] == '*' ? __name + 1 : __name; }

    bool before(const type_info& __arg) const
    { return __name < __arg.__name; }

    bool operator==(const type_info& __arg) const
    { return __name == __arg.__name; }

    bool operator!=(const type_info& __arg) const
    { return !operator==(__arg); }

    virtual bool __is_pointer_p() const;

    virtual bool __is_function_p() const;

  protected:
    const char *__name;

    explicit type_info(const char *__n): __name(__n) { }

  private:
    type_info& operator=(const type_info&);
    type_info(const type_info&);
  };

} // extern "C++"
#endif

示例1-基本数据类型



下表列出了使用typeid操作符的表达式的值

int a;
double b;
char * c;
long d;
运算 描述
typeid(a) == typeid(int) true
typeid(a) == typeid(float) false
typeid(a) == typeid(int *) false
typeid(b) == typeid(double) true
typeid(b) == typeid(float) false
typeid(b) == typeid(long double) false
typeid(c) == typeid(char *) true
typeid(c) == typeid(char) false
typeid(c) == typeid(string) false
typeid(d) == typeid(long) true
typeid(d) == typeid(int) false

操作符typeid返回的是一个type_info类(用于描述数据类型的一个系统类)对象的引用。这个操作符可以用于表达式和类型名(包括自定的数据类型,比如类)。

示例2-类对象


class base
{
public :
    void m(){cout<<"base"<<endl;}
};
class derived : public base
{
public:
    void m(){cout<<"derived"<<endl;}
};

假设我们根据例2中定义的两个类来定义如下指针:

base * p = new derived;

下表将给出使用typeid操作符的结果。

运算 描述
typeid(p) == typeid(base*) true
typeid(p) == typeid(derived*) false
typeid(*p) == typeid(base) true
typeid(*p) == typeid(derived) false

对于表达式typeid(p),同样,因为p是base*类型的指针,因此typeid(p) == typeid(base*)为真,而typeid(p) == typeid(derived*)为假。而对于表达式typeid(*p),由于此时的基类不具有多态性,因而*p将会采用编译期类型来计算,编译期*p是base对象,因此表达式typeid(*p) == typeid(derived)为假,typeid(*p) == typeid(base)为真。

示例3-带虚函数的基类


class base
{
public :
    virtual void m(){cout<<"base"<<endl;}
};
class derived : public base
{
public:
    void m(){cout<<"derived"<<endl;}
};

假设我们如本例所示定义了两个类base类和derived类,基于这两个类定义,我们定义指针如下:

base * p = new derived;

下表将给出使用typeid操作符的结果。

运算 描述
typeid(p) == typeid(base*) true
typeid(p) == typeid(derived*) false
typeid(*p) == typeid(base) false
typeid(*p) == typeid(derived) true

对于表达式typeid(p),因为p是base*类型的指针,因此typeid(p) == typeid(base*)为真,而typeid(p) == typeid(derived*)为假。而对于表达式typeid(*p),因为base类具有多态性,因而在计算typeid(*p)时会根据运行时p所指向的实际类型去计算,而本例中p指向的是派生类对象,因此表达式typeid(*p) == typeid(derived)为真,typeid(*p) == typeid(base)为假。

异常处理bad_typeid


  class bad_typeid : public exception
  {
  public:
    bad_typeid () throw() { }

    // This declaration is not useless:
    // http://gcc.gnu.org/onlinedocs/gcc-3.0.2/gcc_6.html#SEC118
    virtual ~bad_typeid() throw();

    // See comment in eh_exception.cc.
    virtual const char* what() const throw();
  };
} // namespace std

转载:http://blog.csdn.net/gatieme/article/details/50947821

时间: 2024-05-21 21:41:12

C++ typeid关键字详解的相关文章

PHP5中的this,self和parent关键字详解

php5|关键字|详解 PHP5是一具备了大部分面向对象语言的特性的语言,比PHP4有了很多的面向对象的特性,但是有部分概念也比较绕人,所以今天拿出来说说,说的不好,请高手见谅. (阅读本文,需要了解PHP5的面向对象的知识) 首先我们来明白上面三个关键字: this,self,parent,从字面上比较好理解,是指这,自己,父亲,呵呵,比较好玩了,我们先建立几个概念,这三个关键字分别是用在什么地方呢?我们初步解释一下,this是指向当前对象的指针(我们姑且用C里面的指针来看吧),self是指向

java关键字(详解)

基本类型 1 boolean 布尔型 2 byte 字节型 3 char 字符型 4 double 双精度 5 float 浮点 6 int 整型 7 long 长整型 8 short 短整型 9 null 空 10 true 真 11 false 假 程序控制语句 1 break 跳出中断 2 continue 继续 3 return 返回 4 do 运行 5 while 循环 6 if 如果 7 else 否则 8 for 循环 9 instanceof 实例 10 switch 观察 11

Delphi 关键字详解

  Delphi 关键字详解[整理于 "橙子" 的帖子]   absolute //它使得你能够创建一个新变量, 并且该变量的起始地址与另一个变量相同. var Str: string[32]; StrLen: Byte absolute Str; //这个声明指定了变量StrLen起始地址与Str相同. //由于字符串的第0个位置保存了字符串的长度, 所以StrLen的值即字符串长度. begin Str := 'abc'; Edit1.Text := IntToStr(StrLen

Java中final关键字详解_php技巧

谈到final关键字,想必很多人都不陌生,在使用匿名内部类的时候可能会经常用到final关键字.另外,Java中的String类就是一个final类,那么今天我们就来了解final这个关键字的用法. 主要介绍:一.final关键字的基本用法.二.深入理解final关键字 一.final关键字的基本用法 在Java中,final关键字可以用来修饰类.方法和变量(包括成员变量和局部变量).下面就从这三个方面来了解一下final关键字的基本用法. 1.修饰类 当用final修饰一个类时,表明这个类不能

java多线程编程之Synchronized关键字详解_java

本文介绍JAVA多线程中的synchronized关键字作为对象锁的一些知识点. 所谓对象锁,就是就是synchronized 给某个对象 加锁.关于 对象锁 可参考:这篇文章  一.分析 synchronized可以修饰实例方法,如下形式: public class MyObject { synchronized public void methodA() { //do something.... } 这里,synchronized 关键字锁住的是当前对象.这也是称为对象锁的原因. 为啥锁住当

Java 多线程synchronized关键字详解(六)_java

synchronized 关键字,代表这个方法加锁,相当于不管哪一个线程(例如线程A),运行到这个方法时,都要检查有没有其它线程B(或者C. D等)正在用这个方法(或者该类的其他同步方法),有的话要等正在使用synchronized方法的线程B(或者C .D)运行完这个方法后再运行此线程A,没有的话,锁定调用者,然后直接运行.它包括两种用法:synchronized 方法和 synchronized 块. 多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多

Java transient 关键字详解及实例代码_java

Java transient 关键字 1. transient的作用及使用方法 我们都知道一个对象只要实现了Serilizable接口,这个对象就可以被序列化,java的这种序列化模式为开发者提供了很多便利,我们可以不必关系具体序列化的过程,只要这个类实现了Serilizable接口,这个类的所有属性和方法都会自动序列化. 然而在实际开发过程中,我们常常会遇到这样的问题,这个类的有些属性需要序列化,而其他属性不需要被序列化,打个比方,如果一个用户有一些敏感信息(如密码,银行卡号等),为了安全起见

javascript中this关键字详解_javascript技巧

不管学习什么知识,习惯于把自己所学习的知识列成一个list,会有助于我们理清思路,是一个很好的学习方法.强烈推荐. 以下篇幅有点长,希望读者耐心阅读. 以下内容会分为如下部分: 1.涵义 1.1:this涵义 1.2:this指向的可变性 2.使用场合 2.1:全局环境 2.2:构造函数 2.3:对象的方法 3.使用注意点 3.1:避免多层嵌套this 3.2:避免数组处理方法中的this 3.3:避免回调函数中的this 1.涵义 1.1:this涵义 在我写的一篇关于 构造函数与new关键字

C++ 中try finally关键字详解_C 语言

try-finally语句是Microsoft对C和C++语言的扩展,它能使32位的目标程序在异常出现时,有效保证一些资源能够被及时清除,这些资源的清除任务可以包括例如内存的释放,文件的关闭,文件句柄的释放等等.try-finally语句特别适合这样的情况下使用,例如一个例程(函数)中,有几个地方需要检测一个错误,并且在错误出现时,函数可能提前返回. #include <windows.h> #include <stdio.h> try-finally语句的语法与try-excep