数据分析师面试常见的77个问题

 

随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map reduce、余弦距离?

5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?

10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、SAS, R, Python, Perl语言的区别是?

15、什么是大数据的诅咒?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢TD数据库的什么特征?

19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?

20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?

21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?

25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

30、在SQL, Perl, C++, Python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?

31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?

32、定义:QA(质量保障)、六西格玛、实验设计。好的与坏的实验设计能否举个案例?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对A/B测试熟吗?

39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的敏感性的想法如何看?

40、对于一下逻辑回归、决策树、神经网络。在过去15年中这些技术做了哪些大的改进?

41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?

42、你如何建议一个非参数置信区间?

43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

49、你有使用过API接口的经验吗?什么样的API?是谷歌还是亚马逊还是软件即时服务?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

51、可视化使用什么工具?在作图方面,你如何评价Tableau?R?SAS?在一个图中有效展现五个维度?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/IT部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及IT项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?

56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、Zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的FB帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?

77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?

原文发布时间为:2013-08-25

时间: 2024-02-28 01:52:56

数据分析师面试常见的77个问题的相关文章

数据分析师常见的十个问题

1.如何做好数据分析? 分析师成长是通过"干"."思"."熬"出来的.干:多做.哪些是临时需求.你要做各种各样的分析:思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀.熬:通过时间的积累,你的商业意识.数据分析思维.技能得到提升,广积粮,缓称王,实现厚积而薄发. 2.如何做好数据挖掘? 数据挖掘和数据分析在我认为,都是实现数据价值的"工具"."方式".数据挖掘相对于数据分析来说,入门门槛会更高一些

优秀数据分析师怎能不信仰数据?

对于数据分析的态度,有几句牢骚要发泄一下,纯属这几年工作的个人心里感受. 面试后的感想 这个周末我一直在面试,总共三十多人,只有一半能到我这一关,不管是工作了几年的,还是一点工作经验都没有的,不管是名牌大学的还是一般学校的,他们对数据的态度都让我有些失望. 我问他们,假如我是京东商城的CEO,周一早上你要给我看上周的三个数据,你会选择什么数据? 几乎所有的人没有1秒就回答,比如流量.转化率.交易量等. 我接着问,你听清楚我的问题了吗,我说是给CEO看的.接着大部分人会倒抽口气说,也许CEO不会关

想成为大数据分析师必须知道的这些事儿(文末福利)

​点击标题下「异步社区」可快速关注 "不是所有有价值的都能被计算,不是所有能计算的都有价值." --阿尔伯特·爱因斯坦 观察一下周围的世界,你就会发现,几秒钟内会产生.捕获并通过媒介传输庞大的数据.这些数据可能来自于个人计算机(PC).社交网站.企业的业务或通信系统.ATM机和许多其他渠道. 一些报告宣称,在2002年的时候大约有5 EB(1 EB= 1 024 PB=260字节)的在线数据.然而到了2009年,这个数字增长了56倍,达到281 EB.在2009年之后,该数字更是呈现了

阅览5分钟 教你快速成为数据分析师

文章讲的是阅览5分钟 教你快速成为数据分析师,2016年可以说是大数据市场热火朝天的一年,无论是大型企业.中小型企业纷纷伸长了脖子想要和大数据这个互联网因素浓郁的技术挂钩.许多的企业也走在开始尝试用大数据技术进行转型的路上- 然而"大数据切实利用起来"还是需要落实落地,与几年前我们刚开始接触的Hadoop相比,数据分析变得更重要. 先来看2017大数据行业的五大趋势 物联网(IoT)和大数据是同一枚硬币的两面;数十亿与互联网连接的"物件"将生产大量数据;深度学习是一

数据分析师的必读书单

有不少人留言希望我推荐数据分析的书单,刚好即将春节,无论是假日学习还是年后,都值得充电.读书最好的时候是学生时期,其次是现在.内容按照 <如何七周成为数据分析师 > 的顺序. 数据分析是一门专业且跨越多个领域的学科,虽然我每篇公众号都足够篇幅(乃至我自己觉得啰嗦),可我还是得承认存在缺漏.如果有好书作为参考,对数据分析能力的成长更有帮助. 这份书单权作入门级推荐,如果大家有更好的欢迎留言说明.我不能保证全部看过,毕竟基础书没必要看几本,但我尽量做到客观.建议大家根据自己基础挑选,不要贪多. 大

如何成为一名优秀的数据分析师?

本文将从一个数据分析师的所需要的整体知识框架和能力入手,和大家分享一个优秀的数据分析师是怎样炼成的. 主要会讲数据分析师的演变.数据分析价值体系.数据分析师必备的四大能力.七大常用思路以及实战分析案例. 近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然. 过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高.运营效率的不断下降,这种粗放的经营模式已经不再可行.互联网企业迫切需要通过数据分析来实现精细化运营,降低成本.提高效率;而这对数据分析师也提出了更

七周成为数据分析师—Excel实战篇

本文是<七周成为数据分析师>的第三篇教程,如果想要了解写作初衷,可以先行阅读七周指南.温馨提示:如果您已经熟悉Excel,大可不必再看这篇文章,或只挑选部分. 在Excel技巧和Excel函数后,今天这篇文章讲解实战,如何运用上两篇文章的知识进行分析.内容是新手向的基础教程.曾经有童鞋向我反应没有Excel数据练习,所以这次提供真实数据.为了更好的了解数据分析师这个岗位,我用爬虫爬取了招聘网站上约5000条的数据分析师职位数.拿数据分析师进行数据分析.数据真实来源于网络,属于网站方,请勿用于商

七周成为数据分析师—Excel技巧篇

本文是<七周成为数据分析师>的第二篇教程,如果想要了解写作初衷,可以先行阅读七周指南.温馨提示:如果您已经熟悉Excel,大可不必再看这篇文章,或只挑选部分. 上一篇文章<七周成为数据分析师-Excel函数篇>教了大家函数,今天讲解Excel的技巧.本次讲解依然是提纲,图文部分引用自百度经验.如果有疑问或建议,可以留言给我,也可以网上搜索.内容方面照旧会补充SQL和Python. 快捷键 Excel的快捷键很多,以下主要是能提高效率. Ctrl+方向键,对单元格光标快速移动,移动到

数据分析师的基本素养——论如何成为一名数据科学家 Part 2

更多深度文章,请关注: https://yq.aliyun.com/cloud 本文为<数据分析师的基本素养--论如何成为一名数据科学家>文章的第二部分,第一部分请点击这里. Pronojit Saha,数据发烧友 数据科学入门的自学之路 对于那些想要入门数据科学的新手,这里有一份大纲,或许能够为大家提供一些思路.(其内容摘自我的一篇博客:如何获得"基本技能集"-自主学习的方式).我的建议是从下面每项建议中逐一挑选一到两个资料或链接,掌握其中介绍的内容. 基本的先决条件: