【Linux系统编程】 Linux系统调用概述

系统调用概述

系统调用,顾名思义,说的是操作系统提供给用户程序调用的一组“特殊”接口。用户程序可以通过这组“特殊”接口来获得操作系统内核提供的服务,比如用户可以通过文件系统相关的调用请求系统打开文件、关闭文件或读写文件,可以通过时钟相关的系统调用获得系统时间或设置定时器等。

从逻辑上来说,系统调用可被看成是一个内核与用户空间程序交互的接口——它好比一个中间人,把用户进程的请求传达给内核,待内核把请求处理完毕后再将处理结果送回给用户空间。

系统服务之所以需要通过系统调用来提供给用户空间的根本原因是为了对系统进行“保护”,因为我们知道 Linux 的运行空间分为内核空间与用户空间,它们各自运行在不同的级别中,逻辑上相互隔离。所以用户进程在通常情况下不允许访问内核数据,也无法使用内核函数,它们只能在用户空间操作用户数据,调用用户空间函数。比如我们熟悉的“hello
world”程序(执行时)就是标准的用户空间进程,它使用的打印函数 printf 就属于用户空间函数,打印的字符“hello word”字符串也属于用户空间数据。

但是很多情况下,用户进程需要获得系统服务(调用系统程序),这时就必须利用系统提供给用户的“特殊接口”——系统调用了,它的特殊性主要在于规定了用户进程进入内核的具体位置;换句话说,用户访问内核的路径是事先规定好的,只能从规定位置进入内核,而不准许肆意跳入内核。有了这样的陷入内核的统一访问路径限制才能保证内核安全无误。我们可以形象地描述这种机制:作为一个游客,你可以买票要求进入野生动物园,但你必须老老实实地坐在观光车上,按照规定的路线观光游览。当然,不准下车,因为那样太危险,不是让你丢掉小命,就是让你吓坏了野生动物。

系统调用的实现

系统调用是属于操作系统内核的一部分的,必须以某种方式提供给进程让它们去调用。CPU 可以在不同的特权级别下运行,而相应的操作系统也有不同的运行级别,用户态和内核态。运行在内核态的进程可以毫无限制的访问各种资源,而在用户态下的用户进程的各种操作都有着限制,比如不能随意的访问内存、不能开闭中断以及切换运行的特权级别。显然,属于内核的系统调用一定是运行在内核态下,但是如何切换到内核态呢

答案是软件中断。软件中断和我们常说的中断(硬件中断)不同之处在于,它是通过软件指令触发而并非外设引发的中断,也就是说,又是编程人员开发出的一种异常(该异常为正常的异常)。操作系统一般是通过软件中断从用户态切换到内核态。
        

中断有两个重要的属性,中断号和中断处理程序。中断号用来标识不同的中断,不同的中断具有不同的中断处理程序。在操作系统内核中维护着一个中断向量表(Interrupt Vector Table),这个数组存储了所有中断处理程序的地址,而中断号就是相应中断在中断向量表中的偏移量。更多详细说明请看《系统调用的实现原理》

系统调用和库函数的区别

Linux 下对文件操作有两种方式:系统调用(system call)和库函数调用(Library functions)。

库函数由两类函数组成:

1)不需要调用系统调用

不需要切换到内核空间即可完成函数全部功能,并且将结果反馈给应用程序,如strcpy、bzero 等字符串操作函数。

2)需要调用系统调用

需要切换到内核空间,这类函数通过封装系统调用去实现相应功能,如 printf、fread等。

系统调用是需要时间的,程序中频繁的使用系统调用会降低程序的运行效率。当运行内核代码时,CPU工作在内核态,在系统调用发生前需要保存用户态的栈和内存环境,然后转入内核态工作。系统调用结束后,又要切换回用户态。这种环境的切换会消耗掉许多时间。

库函数访问文件的时候根据需要,设置不同类型的缓冲区,从而减少了直接调用 IO 系统调用的次数,提高了访问效率。缓冲区详情请看《浅谈标准I/O缓冲区》。

这个过程类似于快递员给某个区域(内核空间)送快递一样,快递员有两种方式送:

1)来一件快递就马上送到目的地,来一件送一件,这样导致来回走比较频繁(系统调用

2)等快递攒着差不多后(缓冲区),才一次性送到目的地(库函数调用

函数库调用 VS 系统调用

资料参考:http://blog.csdn.net/orange_os

其中有一些函数的作用完全相同,只是参数不同。(可能很多熟悉C++朋友马上就能联想起函数重载,但是别忘了Linux核心是用C语言写的,所以只能取成不同的函数名)。还有一些函数已经过时,被新的更好的函数所代替了(gcc在链接这些函数时会发出警告),但因为兼容的原因还保留着,这些函数我会在前面标上“*”号以示区别。

一、进程控制:

fork 创建一个新进程
clone 按指定条件创建子进程
execve 运行可执行文件
exit 中止进程
_exit 立即中止当前进程
getdtablesize 进程所能打开的最大文件数
getpgid 获取指定进程组标识号
setpgid 设置指定进程组标志号
getpgrp 获取当前进程组标识号
setpgrp 设置当前进程组标志号
getpid 获取进程标识号
getppid 获取父进程标识号
getpriority 获取调度优先级
setpriority 设置调度优先级
modify_ldt 读写进程的本地描述表
nanosleep 使进程睡眠指定的时间
nice 改变分时进程的优先级
pause 挂起进程,等待信号
personality 设置进程运行域
prctl 对进程进行特定操作
ptrace 进程跟踪
sched_get_priority_max 取得静态优先级的上限
sched_get_priority_min 取得静态优先级的下限
sched_getparam 取得进程的调度参数
sched_getscheduler 取得指定进程的调度策略
sched_rr_get_interval 取得按RR算法调度的实时进程的时间片长度
sched_setparam 设置进程的调度参数
sched_setscheduler 设置指定进程的调度策略和参数
sched_yield 进程主动让出处理器,并将自己等候调度队列队尾
vfork 创建一个子进程,以供执行新程序,常与execve等同时使用
wait 等待子进程终止
wait3 参见wait
waitpid 等待指定子进程终止
wait4 参见waitpid
capget 获取进程权限
capset 设置进程权限
getsid 获取会晤标识号
setsid 设置会晤标识号

回页首

二、文件系统控制

1、文件读写操作
fcntl 文件控制
open 打开文件
creat 创建新文件
close 关闭文件描述字
read 读文件
write 写文件
readv 从文件读入数据到缓冲数组中
writev 将缓冲数组里的数据写入文件
pread 对文件随机读
pwrite 对文件随机写
lseek 移动文件指针
_llseek 在64位地址空间里移动文件指针
dup 复制已打开的文件描述字
dup2 按指定条件复制文件描述字
flock 文件加/解锁
poll I/O多路转换
truncate 截断文件
ftruncate 参见truncate
umask 设置文件权限掩码
fsync 把文件在内存中的部分写回磁盘
2、文件系统操作
access 确定文件的可存取性
chdir 改变当前工作目录
fchdir 参见chdir
chmod 改变文件方式
fchmod 参见chmod
chown 改变文件的属主或用户组
fchown 参见chown
lchown 参见chown
chroot 改变根目录
stat 取文件状态信息
lstat 参见stat
fstat 参见stat
statfs 取文件系统信息
fstatfs 参见statfs
readdir 读取目录项
getdents 读取目录项
mkdir 创建目录
mknod 创建索引节点
rmdir 删除目录
rename 文件改名
link 创建链接
symlink 创建符号链接
unlink 删除链接
readlink 读符号链接的值
mount 安装文件系统
umount 卸下文件系统
ustat 取文件系统信息
utime 改变文件的访问修改时间
utimes 参见utime
quotactl 控制磁盘配额

回页首

三、系统控制

ioctl I/O总控制函数
_sysctl 读/写系统参数
acct 启用或禁止进程记账
getrlimit 获取系统资源上限
setrlimit 设置系统资源上限
getrusage 获取系统资源使用情况
uselib 选择要使用的二进制函数库
ioperm 设置端口I/O权限
iopl 改变进程I/O权限级别
outb 低级端口操作
reboot 重新启动
swapon 打开交换文件和设备
swapoff 关闭交换文件和设备
bdflush 控制bdflush守护进程
sysfs 取核心支持的文件系统类型
sysinfo 取得系统信息
adjtimex 调整系统时钟
alarm 设置进程的闹钟
getitimer 获取计时器值
setitimer 设置计时器值
gettimeofday 取时间和时区
settimeofday 设置时间和时区
stime 设置系统日期和时间
time 取得系统时间
times 取进程运行时间
uname 获取当前UNIX系统的名称、版本和主机等信息
vhangup 挂起当前终端
nfsservctl 对NFS守护进程进行控制
vm86 进入模拟8086模式
create_module 创建可装载的模块项
delete_module 删除可装载的模块项
init_module 初始化模块
query_module 查询模块信息
*get_kernel_syms 取得核心符号,已被query_module代替

回页首

四、内存管理

brk 改变数据段空间的分配
sbrk 参见brk
mlock 内存页面加锁
munlock 内存页面解锁
mlockall 调用进程所有内存页面加锁
munlockall 调用进程所有内存页面解锁
mmap 映射虚拟内存页
munmap 去除内存页映射
mremap 重新映射虚拟内存地址
msync 将映射内存中的数据写回磁盘
mprotect 设置内存映像保护
getpagesize 获取页面大小
sync 将内存缓冲区数据写回硬盘
cacheflush 将指定缓冲区中的内容写回磁盘

回页首

五、网络管理

getdomainname 取域名
setdomainname 设置域名
gethostid 获取主机标识号
sethostid 设置主机标识号
gethostname 获取本主机名称
sethostname 设置主机名称

回页首

六、socket控制

socketcall socket系统调用
socket 建立socket
bind 绑定socket到端口
connect 连接远程主机
accept 响应socket连接请求
send 通过socket发送信息
sendto 发送UDP信息
sendmsg 参见send
recv 通过socket接收信息
recvfrom 接收UDP信息
recvmsg 参见recv
listen 监听socket端口
select 对多路同步I/O进行轮询
shutdown 关闭socket上的连接
getsockname 取得本地socket名字
getpeername 获取通信对方的socket名字
getsockopt 取端口设置
setsockopt 设置端口参数
sendfile 在文件或端口间传输数据
socketpair 创建一对已联接的无名socket

回页首

七、用户管理

getuid 获取用户标识号
setuid 设置用户标志号
getgid 获取组标识号
setgid 设置组标志号
getegid 获取有效组标识号
setegid 设置有效组标识号
geteuid 获取有效用户标识号
seteuid 设置有效用户标识号
setregid 分别设置真实和有效的的组标识号
setreuid 分别设置真实和有效的用户标识号
getresgid 分别获取真实的,有效的和保存过的组标识号
setresgid 分别设置真实的,有效的和保存过的组标识号
getresuid 分别获取真实的,有效的和保存过的用户标识号
setresuid 分别设置真实的,有效的和保存过的用户标识号
setfsgid 设置文件系统检查时使用的组标识号
setfsuid 设置文件系统检查时使用的用户标识号
getgroups 获取后补组标志清单
setgroups 设置后补组标志清单

回页首

八、进程间通信

ipc 进程间通信总控制调用
1、信号
sigaction 设置对指定信号的处理方法
sigprocmask 根据参数对信号集中的信号执行阻塞/解除阻塞等操作
sigpending 为指定的被阻塞信号设置队列
sigsuspend 挂起进程等待特定信号
signal 参见signal
kill 向进程或进程组发信号
*sigblock 向被阻塞信号掩码中添加信号,已被sigprocmask代替
*siggetmask 取得现有阻塞信号掩码,已被sigprocmask代替
*sigsetmask 用给定信号掩码替换现有阻塞信号掩码,已被sigprocmask代替
*sigmask 将给定的信号转化为掩码,已被sigprocmask代替
*sigpause 作用同sigsuspend,已被sigsuspend代替
sigvec 为兼容BSD而设的信号处理函数,作用类似sigaction
ssetmask ANSI C的信号处理函数,作用类似sigaction
2、消息
msgctl 消息控制操作
msgget 获取消息队列
msgsnd 发消息
msgrcv 取消息
3、管道
pipe 创建管道
4、信号量
semctl 信号量控制
semget 获取一组信号量
semop 信号量操作
5、共享内存
shmctl 控制共享内存
shmget 获取共享内存
shmat 连接共享内存
shmdt 拆卸共享内存

参考资料

  • Linux man pages
  • Advanced Programming in the UNIX Environment, W. Richard Stevens, 1993

参考网址:http://www.ibm.com/developerworks/cn/linux/kernel/syscall/part1/appendix.html

时间: 2015-08-21

【Linux系统编程】 Linux系统调用概述的相关文章

LINUX系统编程 LINUX 虚拟内存

LINUX 虚拟内存 以32位操作系统为例子,因为64位系统虚拟地址过大为2^64,32位仅仅为2^32=4G更利于描述,但是原理东西都一样 这首先要从程序和进程之间的关系开始,我们一般写好一段C\C++代码编译后仅仅为可执行文件假设为a.out,我们 运行a.out的时候,这个才叫进程,进程是OS级别抽象的实体(PCB task_struct结构体),为程序运行进行各种检查和 系统资源分配,一个PCB包含部分信息如下: (摘至刑文鹏LINUX系统编程讲义) * 进程id.系统中每个进程有唯一的

LINUX系统编程 LINUX地区(locale)设置

LINUX本地的locale设置使用/etc/sysconfig/i18n进行设置, 这里的i18n是术语internationalization的缩写i加上18字符 在加上n,这样更为方便,同时区一样LINUX地区系统维护在 /usr/share/locale中,该目录下每个目录都是特定地区信息 的集合,目录的约定为: language(ISO语言代码)[_territory(ISO国家代码)[.codeset(字符集)]][@modifier(如果前面都一样这个用于区分)] 一般只包含lan

《Linux系统编程(第2版)》——1.4 Linux编程的概念

1.4 Linux编程的概念 本节给出了Linux系统提供的服务的简要概述.所有的UNIX系统,包括Linux,提供了共同的抽象和接口集合.实际上,UNIX本身就是由这些共性定义的,比如对文件和进程的抽象.管道和socket的管理接口等等,都构成了UNIX系统的核心. 本概述假定你对Linux环境很熟悉:会使用shell的基础命令.能够编译简单的C程序.它不是关于Linux或其编程环境的,而是关于Linux系统编程的基础. 1.4.1 文件和文件系统文件是Linux系统中最基础最重要的抽象.Li

《Linux系统编程(第2版)》——第1章 入门和基本概念 1.1 系统编程

第1章 入门和基本概念 摆在你面前的是一本关于系统编程的书,你将在本书中学习到编写系统软件的相关技术和技巧.系统软件运行在系统的底层,与内核和系统核心库进行交互.常见的系统软件包括Shell.文本编辑器.编译器.调试器.核心工具(GNU Core Utilities)以及系统守护进程.此外,网络服务.Web服务和数据库也属于系统软件的范畴.这些程序都是基于内核和C库实现的,可以称为"纯"系统软件.相对地,其他软件(如高级GUI应用),很少和底层直接交互.有些程序员一直在编写系统软件,而

《Linux系统编程(第2版)》——导读

前言 这本书是关于Linux上的系统编程."系统编程"是指编写系统软件,其代码在底层运行,直接跟内核和核心系统库对话.换句话说,本书的主题是Linux系统调用和底层函数说明,如C库定义的函数. 虽然已经有很多书探讨UNIX上的系统编程,却很少有专注于探讨Linux方面的书籍,而探讨最新版本的Linux以及Linux特有的高级接口的书籍更是凤毛麟角.此外,本书还有一个优势:我为Linux贡献了很多代码,包括内核及其上面的系统软件.实际上,本书中提到的一些系统调用和系统软件就是我实现的.因

《Linux系统编程(第2版)》——1.2 API和ABI

1.2 API和ABI 程序员都希望自己实现的程序能够一直运行在其声明支持的所有系统上.他们希望能在自己的Linux版本上运行的程序也能够运行于其他Linux版本,同时还可以运行在其他支持Linux体系结构的更新(或更老)的Linux版本上. 在系统层,有两组独立的影响可移植性的定义和描述.一是应用程序编程接口(Application Programming Interface,API),二是应用程序二进制接口(Application Binary Interface,ABI),它们都是用来定义

linux系统编程之文件与I/O(六) fcntl函数与文件锁

一.fcntl函数 功能:操纵文件描述符,改变已打开的文件的属性 int fcntl(int fd, int cmd, ... /* arg */ ); cmd的取值可以如下: 复制文件描述符 F_DUPFD (long) 设置/获取文件描述符标志 F_GETFD (void) F_SETFD (long) 设置/获取文件状态标志 F_GETFL (void) F_SETFL (long) 获取/设置文件锁 F_GETLK F_SETLK,F_SETLKW 其中复制文件描述符可参见<linux系

《Linux系统编程(第2版)》——2.12 结束语

2.12 结束语 本章讨论了Linux系统编程的基础:文件I/O.在Linux这样遵循一切皆文件的操作系统中,了解如何打开.读.写和关闭文件是非常重要的.所有这些操作都是传统的UNIX方式,很多标准都涵盖它们.

《Linux系统编程(第2版)》——1.5 开始系统编程

1.5 开始系统编程 这一章着眼于Linux系统编程的基础概念并从程序员视角探索Linux系统.下一章将讨论基本的文件I/O,这当然包括读写文件,但是由于Linux把很多接口以文件形式实现,因此文件I/O的至关重要性不仅仅是对于文件而言,对于Linux系统的很多其他方面亦是如此. 了解了这些基础知识后,可以开始深入探索真正的系统编程了.我们一起动手吧.