《大数据分析原理与实践》——习题

习题




时间: 2017-09-01

《大数据分析原理与实践》——习题的相关文章

《大数据分析原理与实践》一一2.3 推断统计

2.3 推断统计推断统计是研究如何利用样本数据来推断总体特征的统计方法,其目的是利用问题的基本假定及包含在观测数据中的信息,做出尽量精确和可靠的结论.基本特征是其依据的条件中包含带随机性的观测数据.以随机现象为研究对象的概率论是统计推断的理论基础.它包含两个内容:参数估计,即利用样本信息推断总体特征,例如某一群人的视力构成一个总体,通常认为视力是服从正态分布的,但不知道这个总体的均值,随机抽部分人,测得视力的值,用这些数据来估计这群人的平均视力:假设检验,即利用样本信息判断对总体的假设是否成立.

《大数据分析原理与实践》——导读

前 言 本书的缘起与成书过程 大数据经过分析能够产生高价值,这无疑已在大数据火爆的今天成为共识,从而使得大数据分析在"大数据+"涉及的领域(如工业.医疗.农业.教育等)有了广泛的应用.大数据分析的相关知识不仅是大数据行业的从业人员应该必备的,也是和大数据相关的各行各业的从业者需要了解的. 然而,人们对大数据分析的解读有多个不同方面.从"分析"的角度解读,大数据分析可以看作统计分析的延伸:从 "数据"的角度解读,大数据分析可以看作数据管理与挖掘的扩

《大数据分析原理与实践》——1.4 大数据分析的过程、技术与难点

1.4 大数据分析的过程.技术与难点 1.大数据分析的过程 大数据分析的过程大致分为下面6个步骤: (1)业务理解 最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将业务知识转化为数据分析问题的定义和实现目标的初步计划上. (2)数据理解 数据理解阶段从初始的数据收集开始,通过一些活动的处理,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起兴趣的子集去形成隐含信息的假设. (3)数据准备 数据准备阶段包括从未处理数据中构造最终数据集的所有活动.这些数据将是模型工具

《大数据分析原理与实践》一一1.4 大数据分析的过程、技术与难点

1.4 大数据分析的过程.技术与难点 1.大数据分析的过程 大数据分析的过程大致分为下面6个步骤: (1)业务理解 最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将业务知识转化为数据分析问题的定义和实现目标的初步计划上. (2)数据理解 数据理解阶段从初始的数据收集开始,通过一些活动的处理,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起兴趣的子集去形成隐含信息的假设. (3)数据准备 数据准备阶段包括从未处理数据中构造最终数据集的所有活动.这些数据将是模型工具

《大数据分析原理与实践》一一1.5 全书概览

1.5 全书概览 本书将较为全面地描述大数据分析的模型.技术.实现与应用.其中第2-7章介绍大数据分析模型,包括关联分析模型.分类分析模型.聚类分析模型.结构分析模型和文本分析模型:第8-11章介绍大数据分析相关的技术,包括大数据预处理.特征选择和降维方法.面向大数据的数据仓库和大数据分析算法.第12-14章介绍三种用于实现大数据分析算法的平台,分别是大数据计算平台.流式计算平台和大图计算平台:第15-16章介绍两类大数据分析的具体应用,分别讲述社会网络和推荐系统. 第2章是大数据分析建模的基础

《大数据分析原理与实践》一一3.4 小结

3.4 小结关联分析模型用于描述多个变量之间的关联,这是大数据分析的一种重要模型,本章主要探讨了回归分析.关联规则分析和相关分析这三类关联分析.3.1节介绍了回归分析模型,即描述一个或多个变量与其余变量的依赖关系,包括其基本定义和数学模型,并介绍了回归分析的基本计算方法和模型检验,紧接着介绍了回归模型的拓展,包括多项式回归.GBDT回归和XGBOOST回归,并且简要介绍了"回归大家族",让读者对于整个回归问题有了全面的了解.3.2节讲述了关联规则分析模型,即查找存在于项目集合或对象集合

《大数据分析原理与实践》一一

3.3 相关分析 相关关系是一种非确定性的关系,例如,以X和Y分别表示一个人的身高和体重,或分别表示每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系.在一些问题中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关关系.典型相关分析就是研究两组变量之间相关程度的一种多元统计分析方法.典型相关分析是研究两组变量之间相关关系的一种统计分析方法.为了研究两组变量X1,X2,-,Xp和

《大数据分析原理与实践》——2.3 推断统计

2.3 推断统计 推断统计是研究如何利用样本数据来推断总体特征的统计方法,其目的是利用问题的基本假定及包含在观测数据中的信息,做出尽量精确和可靠的结论.基本特征是其依据的条件中包含带随机性的观测数据.以随机现象为研究对象的概率论是统计推断的理论基础.它包含两个内容:参数估计,即利用样本信息推断总体特征,例如某一群人的视力构成一个总体,通常认为视力是服从正态分布的,但不知道这个总体的均值,随机抽部分人,测得视力的值,用这些数据来估计这群人的平均视力:假设检验,即利用样本信息判断对总体的假设是否成立

《大数据分析原理与实践》——2.1 大数据分析模型建立方法

2.1 大数据分析模型建立方法 大数据分析模型可以基于传统数据分析方法中的建模方法建立,也可以采取面向大数据的独特方法来建立.为了区分这两种模型建立方法,我们分别简称其为传统建模方法和大数据建模方法.由于这两种模型建立方法存在一些交集(如业务调研.结果校验等),我们采取统一框架来进行介绍,在介绍时区分两种建模方法的不同之处. (1)业务调研 首先需要向业务部门进行调研,了解业务需要解决的问题,将业务问题映射成数据分析工作和任务.对业务的了解无疑是传统建模方法和大数据建模方法都需要的. (2)准备

《大数据分析原理与实践》——1.5 全书概览

1.5 全书概览 本书将较为全面地描述大数据分析的模型.技术.实现与应用.其中第2-7章介绍大数据分析模型,包括关联分析模型.分类分析模型.聚类分析模型.结构分析模型和文本分析模型:第8-11章介绍大数据分析相关的技术,包括大数据预处理.特征选择和降维方法.面向大数据的数据仓库和大数据分析算法.第12-14章介绍三种用于实现大数据分析算法的平台,分别是大数据计算平台.流式计算平台和大图计算平台:第15-16章介绍两类大数据分析的具体应用,分别讲述社会网络和推荐系统. 第2章是大数据分析建模的基础