最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)

上一篇文章记录了GDI播放视频的技术。打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术。Direct3D应该Windows下最常用的播放视频的技术。实际上视频播放只是Direct3D的“副业”,它主要用于3D游戏制作。当前主流的游戏几乎都是使用Direct3D制作的,例如《地下城与勇士》,《穿越火线》,《英雄联盟》,《魔兽世界》,《QQ飞车》等等。使用Direct3D可以用两种方式渲染视频:Surface和Texture。使用Surface相对来说比使用Texture要简单一些,但是不如使用Texture灵活。鉴于使用Surface更加容易上手,本文记录使用Direct3D中的Surface显示视频的技术。下一篇文章再记录使用Direct3D中的Texture显示视频的技术。

 

Direct3D简介

下面下简单记录一下背景知识。摘录修改了维基上的一部分内容(维基上这部分叙述貌似很不准确…):

Direct3D(简称:D3D)是微软公司在Microsoft Windows系统上开发的一套3D绘图API,是DirectX的一部份,目前广为各家显示卡所支援。1995年2月,微软收购了英国的Rendermorphics公司,将RealityLab 2.0技术发展成Direct3D标准,并整合到Microsoft Windows中,Direct3D在DirectX 3.0开始出现。后来在DirectX 8.0发表时与DirectDraw编程介面合并并改名为DirectX Graphics。Direct3D与Windows GDI是同层级组件。它可以直接调用底层显卡的功能。与OpenGL同为电脑绘图软件和电脑游戏最常使用的两套绘图API。

抽象概念

Direct3D的抽象概念包括:Devices(设备),Swap Chains(交换链)和Resources(资源)。

Device(设备)用于渲染3D场景。例如单色设备就会渲染黑白图片,而彩色设备则会渲染彩色图片。Device目前我自己了解的有以下2类(还有其他类型,但不是很熟):

HAL(Hardware Abstraction Layer):支持硬件加速的设备。在所有设备中运行速度是最快的,也是最常用的。
Reference:模拟一些硬件还不支持的新功能。换言之,就是利用软件,在CPU对硬件渲染设备的一个模拟。

每一个Device至少要有一个Swap Chain(交换链)。一个Swap Chain由一个或多个Back Buffer Surfaces(后台缓冲表面)组成。渲染在Back Buffer中完成。
此外,Device包含了一系列的Resources(资源),用于定义渲染时候的数据。每个Resources有4个属性:

Type:描述Resource的类型。例如surface, volume, texture, cube texture, volume texture, surface texture, index buffer 或者vertex buffer。
Usage:描述Resource如何被使用。例如指定Resource是以只读方式调用还是以可读写的方式调用。
Format:数据的格式。比如一个二维表面的像素格式。例如,D3DFMT_R8G8B8的Format表明了数据格式是24 bits颜色深度的RGB数据。
Pool:描述Resource如何被管理和存储。默认的情况下Resource会被存储在设备的内存(例如显卡的显存)中。也可以指定Resource存储在系统内存中。

渲染流水线(rendering pipeline)

Direct3D API定义了一组Vertices(顶点), Textures(纹理), Buffers(缓冲区)转换到屏幕上的流程。这样的流程称为Rendering Pipeline(渲染流水线),它的各阶段包括:

Input Assembler(输入组装):从应用程序里读取vertex数据,将其装进流水线。
Vertex Shader(顶点着色器):对每个顶点属性进行着色。每次处理一个顶点,比如变换、贴图、光照等。注意这个地方可能需要自己编程。
Geometry Shader(几何着色器): Shader Model 4.0引进了几何着色器,处理点、线、面的几何坐标变换。此处我自己还不是很了解。

PS:上述处理完后的数据可以理解为以下图片。即包含顶点信息,但不包含颜色信息。

Stream Output(流输出):将Vertex Shader和Geometry Shader处理完成的数据输出给使用者。
Rasterizer(光栅化): 把算完的顶点转成像素,再将像素(pixels)输出给Pixel Shader。这里也可执行其他工作,比如像素数据的切割,插值等。

PS:光栅化的过程可以理解为下图。即把顶点转换成像素。

Pixel Shader(像素着色器):对每个像素进行着色。注意这个地方可能需要自己编程。
Output Merger(输出混合):整合各种不同的数据,输出最后结果。

视频显示的基础知识

在记录Direct3D的视频显示技术之前,首先记录一下视频显示的基础知识。我自己归纳总结了以下几点知识。

1. 三角形

在Direct3D中经常会出现“三角形”这个概念。这是因为在3D图形渲染中,所有的物体都是由三角形构成的。因为一个三角形可以表示一个平面,而3D物体就是由一个或多个平面构成的。比如下图表示了一个非常复杂的3D地形,它们也不过是由许许多多三角形表示的。

因此我们只要指定一个或多个三角形,就可以表示任意3D物体。

2. 后台缓冲表面,前台表面,交换链,离屏表面

后台缓冲表面和前台表面的概念总是同时出现的。简单解释一下它们的作用。当我们进行复杂的绘图操作时,画面可能有明显的闪烁。这是由于绘制的东西没有同时出现在屏幕上而导致的。“前台表面”+“后台缓冲表面”的技术可以解决这个问题。前台表面即我们看到的屏幕,后台缓冲表面则在内存当中,对我们来说是不可见的。每次的所有绘图操作不是在屏幕上直接绘制,而是在后台缓冲表面中进行,当绘制完成后,需要的时候再把绘制的最终结果显示到屏幕上。这样就解决了上述的问题。

实际上,上述技术还涉及到一个“交换链”(Swap Chain)的概念。所谓的“链”,指的是一系列的表面组成的一个合集。这些表面中有一个是前台表面(显示在屏幕上),剩下的都是后台缓冲表面。其实,简单的交换链不需要很多表面,只要两个就可以了(虽然感觉不像“链”)。一个后台缓冲表面,一个前台表面。所谓的“交换”,即是在需要呈现后台缓冲表面中的内容的时候,交换这两个表面的“地位”。即前台表面变成后台缓冲表面,后台缓冲表面变成前台表面。如此一来,后台缓冲表面的内容就呈现在屏幕上了。原先的前台表面,则扮演起了新的后台缓冲表面的角色,准备进行新的绘图操作。当下一次需要显示画面的时候,这两个表面再次交换,如此循环往复,永不停止。
此外,还有一个离屏表面。离屏表面是永远看不到的表面(所谓“离屏”),它通常被用来存放位图,并对其中的数据做一些处理。本文介绍的例子中就用到了一个离屏表面。通常的做法是把离屏表面上的位图复制到后台缓冲表面,后台缓冲表面再显示到前台表面。

安装DirectX SDK

 

使用Direct3D开发之前需要安装DirectX SDK。安装没有难度,一路“Next”即可。

Microsoft DirectX SDK (June 2010)下载地址:
http://www.microsoft.com/en-us/download/details.aspx?id=6812
使用VC进行开发的时候,需要在项目的“属性”对话框中配置头文件和库:
头文件配置:C/C++->常规->附加包含目录
库文件配置:
(a)链接器->常规->附加库目录。
(b)链接器->输入->附加依赖项(填写一个d3d9.lib)
编程的时候,添加头文件后即可使用:

 

[cpp] view plaincopy

 

  1. #include <d3d9.h>  

 

D3D视频显示的流程

有关Direct3D的知识的介绍还有很多,在这里就不再记录了。正如那句俗话:“Talk is cheap, show me the code.”,光说理论还是会给人一种没有“脚踏实地”的感觉,下文将会结合代码记录Direct3D中使用Surface渲染视频的技术。

使用Direct3D的Surface播放视频一般情况下需要如下步骤:

1. 创建一个窗口(不属于D3D的API)
2. 初始化

1) 创建一个Device 
2) 基于Device创建一个Surface(离屏表面)

3. 循环显示画面

1) 清理
2) 一帧视频数据拷贝至Surface
3) 开始一个Scene
4) Surface数据拷贝至后台缓冲表面
5) 结束Scene
6) 显示(后台缓冲表面->前台表面)

下面结合Direct3D播放YUV/RGB的示例代码,详细分析一下上文的流程。

1. 创建一个窗口(不属于D3D的API)

建立一个Win32的窗口程序,就可以用于Direct3D的显示。程序的入口函数是WinMain(),调用CreateWindow()即可创建一个窗口。这一步是必须的,不然Direct3D绘制的内容就没有地方显示了。此处不再详述。

2. 初始化

1) 创建一个Device

这一步完成的时候,可以得到一个IDirect3DDevice9接口的指针。创建一个Device又可以分成以下几个详细的步骤:
(a) 通过 Direct3DCreate9()创建一个IDirect3D9接口。
获取IDirect3D9接口的关键实现代码只有一行:

[cpp] view plaincopy

 

  1. IDirect3D9 *m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );  

 

IDirect3D9接口是一个代表我们显示3D图形的物理设备的C++对象。它可以用于获得物理设备的信息和创建一个IDirect3DDevice9接口。例如,可以通过它的GetAdapterDisplayMode()函数获取当前主显卡输出的分辨率,刷新频率等参数,实现代码如下。

[cpp] view plaincopy

 

  1. D3DDISPLAYMODE d3dDisplayMode;  
  2. lRet = m_pDirect3D9->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &d3dDisplayMode );  

由代码可以看出,获取的信息存储在D3DDISPLAYMODE结构体中。D3DDISPLAYMODE结构体中包含了主显卡的分辨率等信息:

[cpp] view plaincopy

 

  1. /* Display Modes */  
  2. typedef struct _D3DDISPLAYMODE  
  3. {  
  4.     UINT            Width;  
  5.     UINT            Height;  
  6.     UINT            RefreshRate;  
  7.     D3DFORMAT       Format;  
  8. } D3DDISPLAYMODE;  

也可以用它的GetDeviceCaps()函数搞清楚主显卡是否支持硬件顶点处理,实现的代码如下。

[cpp] view plaincopy

 

  1. D3DCAPS9 d3dcaps;  
  2. lRet=m_pDirect3D9->GetDeviceCaps(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL,&d3dcaps);  
  3. int hal_vp = 0;  
  4. if( d3dcaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ){  
  5.     // yes, save in ‘vp’ the fact that hardware vertex  
  6.     // processing is supported.  
  7.     hal_vp = D3DCREATE_HARDWARE_VERTEXPROCESSING;  
  8. }  

由代码可以看出,获取的设备信息存储在D3DCAPS9结构体中。D3DCAPS9定义比较长包含了各种各样的信息,不再列出来。从该结构体的DevCaps字段可以判断得出该设备是否支持硬件顶点处理。
(b) 设置D3DPRESENT_PARAMETERS结构体,为创建Device做准备。
接下来填充一个D3DPRESENT_PARAMETERS结构的实例。这个结构用于设定我们将要创建的IDirect3DDevice9对象的一些特性,它的定义如下。

[cpp] view plaincopy

 

  1. typedef struct _D3DPRESENT_PARAMETERS_  
  2. {  
  3.     UINT                BackBufferWidth;  
  4.     UINT                BackBufferHeight;  
  5.     D3DFORMAT           BackBufferFormat;  
  6.     UINT                BackBufferCount;  
  7.   
  8.   
  9.     D3DMULTISAMPLE_TYPE MultiSampleType;  
  10.     DWORD               MultiSampleQuality;  
  11.   
  12.   
  13.     D3DSWAPEFFECT       SwapEffect;  
  14.     HWND                hDeviceWindow;  
  15.     BOOL                Windowed;  
  16.     BOOL                EnableAutoDepthStencil;  
  17.     D3DFORMAT           AutoDepthStencilFormat;  
  18.     DWORD               Flags;  
  19.   
  20.   
  21.     /* FullScreen_RefreshRateInHz must be zero for Windowed mode */  
  22.     UINT                FullScreen_RefreshRateInHz;  
  23.     UINT                PresentationInterval;  
  24. } D3DPRESENT_PARAMETERS;  

D3DPRESENT_PARAMETERS这个结构体比较重要。详细列一下它每个参数的含义:
BackBufferWidth:后台缓冲表面的宽度(以像素为单位)。
BackBufferHeight:后台缓冲表面的高度(以像素为单位)。
BackBufferFormat:后台缓冲表面的像素格式(例如:32位像素格式为D3DFMT:A8R8G8B8)。
BackBufferCount:后台缓冲表面的数量,通常设为“1”,即只有一个后备表面。
MultiSampleType:全屏抗锯齿的类型,显示视频没用到,不详细分析。
MultiSampleQuality:全屏抗锯齿的质量等级,显示视频没用到,不详细分析。
SwapEffect:指定表面在交换链中是如何被交换的。支持以下取值:
*D3DSWAPEFFECT_DISCARD:后台缓冲表面区的东西被复制到屏幕上后,后台缓冲表面区的东西就没有什么用了,可以丢弃了。
*D3DSWAPEFFECT_FLIP: 后台缓冲表面拷贝到前台表面,保持后台缓冲表面内容不变。当后台缓冲表面大于1个时使用。
*D3DSWAPEFFECT_COPY: 同上。当后台缓冲表面等于1个时使用。
一般使用D3DSWAPEFFECT_DISCARD。
hDeviceWindow:与设备相关的窗口句柄,你想在哪个窗口绘制就写那个窗口的句柄
Windowed:BOOL型,设为true则为窗口模式,false则为全屏模式
EnableAutoDepthStencil:设为true,D3D将自动创建深度/模版缓冲。
AutoDepthStencilFormat:深度/模版缓冲的格式
Flags:一些附加特性
FullScreen_RefreshRateInHz:刷新率,设定D3DPRESENT_RATE_DEFAULT使用默认刷新率
PresentationInterval:设置刷新的间隔,可以用以下方式:
*D3DPRENSENT_INTERVAL_DEFAULT,则说明在显示一个渲染画面的时候必要等候显示器刷新完一次屏幕。例如显示器刷新率设为80Hz的话,则一秒最多可以显示80个渲染画面。
*D3DPRENSENT_INTERVAL_IMMEDIATE:表示可以以实时的方式来显示渲染画面。
下面列出使用Direct3D播放视频的时候D3DPRESENT_PARAMETERS的一个最简单的设置。

[cpp] view plaincopy

 

  1. //D3DPRESENT_PARAMETERS Describes the presentation parameters.  
  2. D3DPRESENT_PARAMETERS d3dpp;   
  3. ZeroMemory( &d3dpp, sizeof(d3dpp) );  
  4. d3dpp.Windowed = TRUE;  
  5. d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;  
  6. d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;  

 

(c) 通过IDirect3D9的CreateDevice ()创建一个Device。

最后就可以调用IDirect3D9的CreateDevice()方法创建Device了。

CreateDevice()的函数原型如下:

 

[cpp] view plaincopy

 

  1. HRESULT CreateDevice(  
  2. UINT Adapter,  
  3. D3DDEVTYPE DeviceType,  
  4. HWND hFocusWindow,  
  5. DWORD BehaviorFlags,  
  6. D3DPRESENT_PARAMETERS *pPresentationParameters,  
  7. IDirect3DDevice9** ppReturnedDeviceInterface  
  8. );  

其中每个参数的含义如下所列:

 

Adapter:指定对象要表示的物理显示设备。D3DADAPTER_DEFAULT始终是主要的显示器适配器。

DeviceType:设备类型,包括D3DDEVTYPE_HAL(Hardware Accelerator,硬件加速)、D3DDEVTYPE_SW(SoftWare,软件)。
hFocusWindow:同我们在前面d3dpp.hDeviceWindow的相同
BehaviorFlags:设定为D3DCREATE_SOFTWARE_VERTEXPROCESSING(软件顶点处理)或者D3DCREATE_HARDWARE_VERTEXPROCESSING(硬件顶点处理),使用前应该用D3DCAPS9来检测用户计算机是否支持硬件顶点处理功能。
pPresentationParameters:指定一个已经初始化好的D3DPRESENT_PARAMETERS实例
ppReturnedDeviceInterface:返回创建的Device

下面列出使用Direct3D播放视频的时候CreateDevice()的一个典型的代码。

 

[cpp] view plaincopy

 

  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. D3DPRESENT_PARAMETERS d3dpp;  
  3. …  
  4. m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,  
  5.         D3DCREATE_SOFTWARE_VERTEXPROCESSING,  
  6.         &d3dpp, &m_pDirect3DDevice );  

 

 

2) 基于Device创建一个Surface

通过IDirect3DDevice9接口的CreateOffscreenPlainSurface ()方法即可创建一个Surface(离屏表面。所谓的“离屏”指的是永远不在屏幕上显示)。CreateOffscreenPlainSurface ()的函数原型如下所示:

 

[cpp] view plaincopy

 

  1. HRESULT CreateOffscreenPlainSurface(UINT width,  
  2.  UINT height,  
  3.  D3DFORMAT format,  
  4.  D3DPOOL pool,  
  5.  IDirect3DSurface9 ** result,  
  6.  HANDLE * unused  
  7.  );  

其中每个参数的含义如下所列:

 

Width:离屏表面的宽。
Height:离屏表面的高。
Format:离屏表面的像素格式(例如:32位像素格式为D3DFMT_A8R8G8B8)
Pool:D3DPOOL定义了资源对应的内存类型,例如如下几种类型。
D3D3POOL_DEFAULT: 默认值,表示存在于显卡的显存中。
D3D3POOL_MANAGED:由Direct3D自由调度内存的位置(显存或者缓存中)。
D3DPOOL_SYSTEMMEM: 表示位于内存中。
Result:返回创建的Surface。
Unused:还未研究。

下面给出一个使用Direct3D播放视频的时候CreateTexture()的典型代码。该代码创建了一个像素格式为YV12的离屏表面,存储于显卡的显存中。

 

[cpp] view plaincopy

 

  1. IDirect3DDevice9 * m_pDirect3DDevice;  
  2. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  3. …  
  4. m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  5.         lWidth,lHeight,  
  6.         (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),  
  7.         D3DPOOL_DEFAULT,  
  8.         &m_pDirect3DSurfaceRender,  
  9.         NULL);  

 

 

创建Surface完成之后,初始化工作就完成了。

3. 循环显示画面

循环显示画面就是一帧一帧的读取YUV/RGB数据,然后显示在屏幕上的过程,下面详述一下步骤。

1) 清理

在显示之前,通过IDirect3DDevice9接口的Clear()函数可以清理Surface。个人感觉在播放视频的时候用不用这个函数都可以。因为视频本身就是全屏显示的。显示下一帧的时候自然会覆盖前一帧的所有内容。Clear()函数的原型如下所示:

 

[cpp] view plaincopy

 

  1. HRESULT Clear(  
  2.  DWORD Count,  
  3.  const D3DRECT *pRects,  
  4.  DWORD Flags,  
  5.  D3DCOLOR Color,  
  6.  float Z,  
  7.  DWORD Stencil  
  8. );  

其中每个参数的含义如下所列:

 

Count:说明你要清空的矩形数目。如果要清空的是整个客户区窗口,则设为0; 
 pRects:这是一个D3DRECT结构体的一个数组,如果count中设为5,则这个数组中就得有5个元素。 
 Flags:一些标记组合。只有三种标记:D3DCLEAR_STENCIL , D3DCLEAR_TARGET , D3DCLEAR_ZBUFFER。 
 Color:清除目标区域所使用的颜色。 
 float:设置Z缓冲的Z初始值。Z缓冲还没研究过。 
 Stencil:这个在播放视频的时候也没有用到。

下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Clear()的典型代码。

 

[cpp] view plaincopy

 

  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. m_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);  

上述代码运行完后,屏幕会变成蓝色(R,G,B取值为0,0,255)。

 

2) 一帧视频数据拷贝至Surface

操作Surface的像素数据,需要使用IDirect3DSurface9的LockRect()和UnlockRect()方法。使用LockRect()锁定纹理上的一块矩形区域,该矩形区域被映射成像素数组。利用函数返回的D3DLOCKED_RECT结构体,可以对数组中的像素进行直接存取。LockRect()函数原型如下。

 

[cpp] view plaincopy

 

  1. HRESULT LockRect(  
  2.   D3DLOCKED_RECT *pLockedRect,  
  3.   const RECT *pRect,  
  4.   DWORD Flags  
  5. );  

每个参数的意义如下:

 

pLockedRect: 返回的一个D3DLOCKED_RECT结构体用于描述被锁定的区域。
pRect: 使用一个 RECT结构体指定需要锁定的区域。如果为NULL的话就是整个区域。
Flags: 暂时还没有细研究。

其中D3DLOCKED_RECT结构体定义如下所示。

 

[cpp] view plaincopy

 

  1. typedef struct _D3DLOCKED_RECT  
  2. {  
  3.     INT                 Pitch;  
  4.     void*               pBits;  
  5. } D3DLOCKED_RECT;  

 

 

两个参数的意义如下:
Pitch:surface中一行像素的数据量(Bytes)。注意这个的值并不一定等于实际像素数据一行像素的数据量(通常会大一些),它取值一般是4的整数倍。
pBits:指向被锁定的数据。

使用LockRect()函数之后,就可以对其返回的D3DLOCKED_RECT中的数据进行操作了。例如memcpy()等。操作完成后,调用UnlockRect()方法。

下面给出一个使用Direct3D的Surface播放视频的时候IDirect3DSurface9的数据拷贝的典型代码。该代码拷贝了YUV420P的数据至Surface。

[cpp] view plaincopy

 

  1. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  2. HRESULT lRet;  
  3. ...  
  4. D3DLOCKED_RECT d3d_rect;  
  5. lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);  
  6. if(FAILED(lRet))  
  7.     return -1;  
  8. byte *pSrc = buffer;  
  9. byte * pDest = (BYTE *)d3d_rect.pBits;  
  10. int stride = d3d_rect.Pitch;  
  11. unsigned long i = 0;  
  12.   
  13. //Copy Data (YUV420P)  
  14. for(i = 0;i < pixel_h;i ++){  
  15.     memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);  
  16. }  
  17. for(i = 0;i < pixel_h/2;i ++){  
  18.     memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);  
  19. }  
  20. for(i = 0;i < pixel_h/2;i ++){  
  21.     memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);  
  22. }  
  23.   
  24. lRet=m_pDirect3DSurfaceRender->UnlockRect();  

3) 开始一个Scene
使用IDirect3DDevice9接口的BeginScene()开始一个Scene。Direct3D中规定所有绘制方法都必须在BeginScene()和EndScene()之间完成。这个函数没有参数。

4) Surface数据拷贝至后台缓冲表面
使用IDirect3DDevice9接口的GetBackBuffer() 可以获得后台缓冲表面。然后使用StretchRect()方法可以将Surface的数据拷贝至后台缓冲表面中,等待显示。

GetBackBuffer()函数原型如下。

 

[cpp] view plaincopy

 

  1. HRESULT GetBackBuffer(  
  2.   UINT  iSwapChain,   
  3.   UINT  BackBuffer,   
  4.   D3DBACKBUFFER_TYPE Type,  
  5.   IDirect3DSurface9 ** ppBackBuffer   
  6. );  

函数中参数含义如下:

 

iSwapChain:指定正在使用的交换链索引。
BackBuffer:后台缓冲表面索引。
Type:后台缓冲表面的类型。

ppBackBuffer:保存后台缓冲表面的LPDIRECT3DSURFACE9对象。

 

StretchRect()可以将一个矩形区域的像素从设备内存的一个Surface转移到另一个Surface上。StretchRect()函数的原型如下。

 

[cpp] view plaincopy

 

  1. HRESULT StretchRect(  
  2.   IDirect3DSurface9 * pSourceSurface,  
  3.   CONST RECT * pSourceRect,  
  4.   IDirect3DSurface9 * pDestSurface,  
  5.   CONST RECT * pDestRect,  
  6.   D3DTEXTUREFILTERTYPE Filter  
  7. );  

 

 

函数中参数含义如下:
pSourceSurface:指向源Surface的指针。
pSourceRect:使用一个 RECT结构体指定源Surface需要复制的区域。如果为NULL的话就是整个区域。
pDestSurface:指向目标Surface的指针。
pDestRect:使用一个 RECT结构体指定目标Surface的区域。
Filter:设置图像大小变换的时候的插值方法。例如:
D3DTEXF_POINT:邻域法。质量较差。
D3DTEXF_LINEAR:线性插值,最常用。

下面给出的代码将离屏表面的数据传给了后台缓冲表面。一但传给了后台缓冲表面,就可以用于显示了。

 

[cpp] view plaincopy

 

  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  3. IDirect3DSurface9 * pBackBuffer;  
  4.   
  5.   
  6. m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);  
  7. m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);  

 

5) 结束Scene
EndScene()和BeginScene()是成对出现的,不再解释。
6) 显示

使用IDirect3DDevice9接口的Present ()显示结果。Present ()的原型如下。

 

[cpp] view plaincopy

 

  1. HRESULT Present(  
  2.    const RECT *pSourceRect,  
  3.    const RECT *pDestRect,  
  4.    HWND hDestWindowOverride,  
  5.    const RGNDATA *pDirtyRegion  
  6.   );  

几个参数的意义如下:

 

pSourceRect:你想要显示的后台缓冲表面区的一个矩形区域。设为NULL则表示要把整个后台缓冲表面区的内容都显示。 
pDestRect:表示一个显示区域。设为NULL表示整个客户显示区。 
hDestWindowOverride:你可以通过它来把显示的内容显示到不同的窗口去。设为NULL则表示显示到主窗口。 
pDirtyRegion:一般设为NULL

下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Present ()的典型代码。从代码可以看出,全部设置为NULL就可以了。

 

[cpp] view plaincopy

 

  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. …  
  3. m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );  

 

 

播放视频流程总结

文章至此,使用Direct3D显示YUV/RGB的全部流程就记录完毕了。最后贴一张图总结上述流程。

 

代码

完整的代码如下所示。

[cpp] view plaincopy

 

  1. /** 
  2.  * 最简单的Direct3D播放视频的例子(Direct3D播放RGB/YUV)[Surface] 
  3.  * Simplest Video Play Direct3D (Direct3D play RGB/YUV)[Surface] 
  4.  * 
  5.  * 雷霄骅 Lei Xiaohua 
  6.  * leixiaohua1020@126.com 
  7.  * 中国传媒大学/数字电视技术 
  8.  * Communication University of China / Digital TV Technology 
  9.  * http://blog.csdn.net/leixiaohua1020 
  10.  * 
  11.  * 本程序使用Direct3D播放RGB/YUV视频像素数据。使用D3D中的Surface渲染数据。 
  12.  * 使用Surface渲染视频相对于另一种方法(使用Texture)来说,更加简单,适合 
  13.  * 新手学习。 
  14.  * 函数调用步骤如下: 
  15.  * 
  16.  * [初始化] 
  17.  * Direct3DCreate9():获得IDirect3D9 
  18.  * IDirect3D9->CreateDevice():通过IDirect3D9创建Device(设备)。 
  19.  * IDirect3DDevice9->CreateOffscreenPlainSurface():通过Device创建一个Surface(离屏表面)。 
  20.  * 
  21.  * [循环渲染数据] 
  22.  * IDirect3DSurface9->LockRect():锁定离屏表面。 
  23.  * memcpy():填充数据 
  24.  * IDirect3DSurface9->UnLockRect():解锁离屏表面。 
  25.  * IDirect3DDevice9->BeginScene():开始绘制。 
  26.  * IDirect3DDevice9->GetBackBuffer():获得后备缓冲。 
  27.  * IDirect3DDevice9->StretchRect():拷贝Surface数据至后备缓冲。 
  28.  * IDirect3DDevice9->EndScene():结束绘制。 
  29.  * IDirect3DDevice9->Present():显示出来。 
  30.  * 
  31.  * This software play RGB/YUV raw video data using Direct3D. It uses Surface  
  32.  * in D3D to render the pixel data. Compared to another method (use Texture),  
  33.  * it is more simple and suitable for the beginner of Direct3D. 
  34.  * The process is shown as follows: 
  35.  * 
  36.  * [Init] 
  37.  * Direct3DCreate9(): Get IDirect3D9. 
  38.  * IDirect3D9->CreateDevice(): Create a Device. 
  39.  * IDirect3DDevice9->CreateOffscreenPlainSurface(): Create a Offscreen Surface. 
  40.  * 
  41.  * [Loop to Render data] 
  42.  * IDirect3DSurface9->LockRect(): Lock the Offscreen Surface. 
  43.  * memcpy(): Fill pixel data... 
  44.  * IDirect3DSurface9->UnLockRect(): UnLock the Offscreen Surface. 
  45.  * IDirect3DDevice9->BeginScene(): Begin drawing. 
  46.  * IDirect3DDevice9->GetBackBuffer(): Get BackBuffer. 
  47.  * IDirect3DDevice9->StretchRect(): Copy Surface data to BackBuffer. 
  48.  * IDirect3DDevice9->EndScene(): End drawing. 
  49.  * IDirect3DDevice9->Present(): Show on the screen. 
  50.  */  
  51.   
  52. #include <stdio.h>  
  53. #include <tchar.h>  
  54. #include <d3d9.h>  
  55.   
  56. CRITICAL_SECTION  m_critial;  
  57.   
  58. IDirect3D9 *m_pDirect3D9= NULL;  
  59. IDirect3DDevice9 *m_pDirect3DDevice= NULL;  
  60. IDirect3DSurface9 *m_pDirect3DSurfaceRender= NULL;  
  61.   
  62. RECT m_rtViewport;  
  63.   
  64. //set '1' to choose a type of file to play  
  65. //Read BGRA data  
  66. #define LOAD_BGRA    0  
  67. //Read YUV420P data  
  68. #define LOAD_YUV420P 1  
  69.   
  70.   
  71. //Width, Height  
  72. const int screen_w=500,screen_h=500;  
  73. const int pixel_w=320,pixel_h=180;  
  74. FILE *fp=NULL;  
  75.   
  76. //Bit per Pixel  
  77. #if LOAD_BGRA  
  78. const int bpp=32;  
  79. #elif LOAD_YUV420P  
  80. const int bpp=12;  
  81. #endif  
  82.   
  83. unsigned char buffer[pixel_w*pixel_h*bpp/8];  
  84.   
  85.   
  86. void Cleanup()  
  87. {  
  88.     EnterCriticalSection(&m_critial);  
  89.     if(m_pDirect3DSurfaceRender)  
  90.         m_pDirect3DSurfaceRender->Release();  
  91.     if(m_pDirect3DDevice)  
  92.         m_pDirect3DDevice->Release();  
  93.     if(m_pDirect3D9)  
  94.         m_pDirect3D9->Release();  
  95.     LeaveCriticalSection(&m_critial);  
  96. }  
  97.   
  98.   
  99. int InitD3D( HWND hwnd, unsigned long lWidth, unsigned long lHeight )  
  100. {  
  101.     HRESULT lRet;  
  102.     InitializeCriticalSection(&m_critial);  
  103.     Cleanup();  
  104.   
  105.     m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );  
  106.     if( m_pDirect3D9 == NULL )  
  107.         return -1;  
  108.   
  109.     D3DPRESENT_PARAMETERS d3dpp;   
  110.     ZeroMemory( &d3dpp, sizeof(d3dpp) );  
  111.     d3dpp.Windowed = TRUE;  
  112.     d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;  
  113.     d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;  
  114.   
  115.     GetClientRect(hwnd,&m_rtViewport);  
  116.   
  117.     lRet=m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,  
  118.         D3DCREATE_SOFTWARE_VERTEXPROCESSING,  
  119.         &d3dpp, &m_pDirect3DDevice );  
  120.     if(FAILED(lRet))  
  121.         return -1;  
  122.   
  123. #if LOAD_BGRA  
  124.     lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  125.         lWidth,lHeight,  
  126.         D3DFMT_X8R8G8B8,  
  127.         D3DPOOL_DEFAULT,  
  128.         &m_pDirect3DSurfaceRender,  
  129.         NULL);  
  130. #elif LOAD_YUV420P  
  131.     lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  132.         lWidth,lHeight,  
  133.         (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),  
  134.         D3DPOOL_DEFAULT,  
  135.         &m_pDirect3DSurfaceRender,  
  136.         NULL);  
  137. #endif  
  138.   
  139.   
  140.     if(FAILED(lRet))  
  141.         return -1;  
  142.   
  143.     return 0;  
  144. }  
  145.   
  146.   
  147. bool Render()  
  148. {  
  149.     HRESULT lRet;  
  150.     //Read Data  
  151.     //RGB  
  152.     if (fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp) != pixel_w*pixel_h*bpp/8){  
  153.         // Loop  
  154.         fseek(fp, 0, SEEK_SET);  
  155.         fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp);  
  156.     }  
  157.       
  158.     if(m_pDirect3DSurfaceRender == NULL)  
  159.         return -1;  
  160.     D3DLOCKED_RECT d3d_rect;  
  161.     lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);  
  162.     if(FAILED(lRet))  
  163.         return -1;  
  164.   
  165.     byte *pSrc = buffer;  
  166.     byte * pDest = (BYTE *)d3d_rect.pBits;  
  167.     int stride = d3d_rect.Pitch;  
  168.     unsigned long i = 0;  
  169.   
  170.     //Copy Data  
  171. #if LOAD_BGRA  
  172.     int pixel_w_size=pixel_w*4;  
  173.     for(i=0; i< pixel_h; i++){  
  174.         memcpy( pDest, pSrc, pixel_w_size );  
  175.         pDest += stride;  
  176.         pSrc += pixel_w_size;  
  177.     }  
  178. #elif LOAD_YUV420P  
  179.     for(i = 0;i < pixel_h;i ++){  
  180.         memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);  
  181.     }  
  182.     for(i = 0;i < pixel_h/2;i ++){  
  183.         memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);  
  184.     }  
  185.     for(i = 0;i < pixel_h/2;i ++){  
  186.         memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);  
  187.     }  
  188. #endif  
  189.   
  190.     lRet=m_pDirect3DSurfaceRender->UnlockRect();  
  191.     if(FAILED(lRet))  
  192.         return -1;  
  193.   
  194.     if (m_pDirect3DDevice == NULL)  
  195.         return -1;  
  196.   
  197.     m_pDirect3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0 );  
  198.     m_pDirect3DDevice->BeginScene();  
  199.     IDirect3DSurface9 * pBackBuffer = NULL;  
  200.   
  201.     m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);  
  202.     m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);  
  203.     m_pDirect3DDevice->EndScene();  
  204.     m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );  
  205.       
  206.   
  207.     return true;  
  208. }  
  209.   
  210.   
  211. LRESULT WINAPI MyWndProc(HWND hwnd, UINT msg, WPARAM wparma, LPARAM lparam)  
  212. {  
  213.     switch(msg){  
  214.     case WM_DESTROY:  
  215.         Cleanup();  
  216.         PostQuitMessage(0);  
  217.         return 0;  
  218.     }  
  219.     return DefWindowProc(hwnd, msg, wparma, lparam);  
  220. }  
  221.   
  222. int WINAPI WinMain( __in HINSTANCE hInstance, __in_opt HINSTANCE hPrevInstance, __in LPSTR lpCmdLine, __in int nShowCmd )  
  223. {  
  224.     WNDCLASSEX wc;  
  225.     ZeroMemory(&wc, sizeof(wc));  
  226.   
  227.     wc.cbSize = sizeof(wc);  
  228.     wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);  
  229.     wc.lpfnWndProc = (WNDPROC)MyWndProc;  
  230.     wc.lpszClassName = L"D3D";  
  231.     wc.style = CS_HREDRAW | CS_VREDRAW;  
  232.   
  233.     RegisterClassEx(&wc);  
  234.   
  235.     HWND hwnd = NULL;  
  236.     hwnd = CreateWindow(L"D3D", L"Simplest Video Play Direct3D (Surface)", WS_OVERLAPPEDWINDOW, 100, 100, 500, 500, NULL, NULL, hInstance, NULL);  
  237.     if (hwnd==NULL){  
  238.         return -1;  
  239.     }  
  240.       
  241.     if(InitD3D( hwnd, pixel_w, pixel_h)==E_FAIL){  
  242.         return -1;  
  243.     }  
  244.   
  245.     ShowWindow(hwnd, nShowCmd);  
  246.     UpdateWindow(hwnd);  
  247.   
  248. #if LOAD_BGRA  
  249.     fp=fopen("../test_bgra_320x180.rgb","rb+");  
  250. #elif LOAD_YUV420P  
  251.     fp=fopen("../test_yuv420p_320x180.yuv","rb+");  
  252. #endif  
  253.     if(fp==NULL){  
  254.         printf("Cannot open this file.\n");  
  255.         return -1;  
  256.     }  
  257.   
  258.     MSG msg;  
  259.     ZeroMemory(&msg, sizeof(msg));  
  260.   
  261.     while (msg.message != WM_QUIT){  
  262.         //PeekMessage, not GetMessage  
  263.         if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){  
  264.             TranslateMessage(&msg);  
  265.             DispatchMessage(&msg);  
  266.         }  
  267.         else{  
  268.             Sleep(40);  
  269.             Render();  
  270.         }  
  271.     }  
  272.   
  273.   
  274.     UnregisterClass(L"D3D", hInstance);  
  275.     return 0;  
  276. }  

 

代码注意事项

1.可以通过设置定义在文件开始出的宏,决定读取哪个格式的像素数据(bgra,yuv420p)。

[cpp] view plaincopy

 

  1. //set '1' to choose a type of file to play    
  2. //Read BGRA data  
  3. #define LOAD_BGRA    0  
  4. //Read YUV420P data  
  5. #define LOAD_YUV420P 1  

2.窗口的宽高为screen_w,screen_h。像素数据的宽高为pixel_w,pixel_h。它们的定义如下。

 

[cpp] view plaincopy

 

  1. //Width, Height    
  2. const int screen_w=500,screen_h=500;    
  3. const int pixel_w=320,pixel_h=180;    

 

 

3.其他要点
本程序使用的是Win32的API创建的窗口。但注意这个并不是MFC应用程序的窗口。MFC代码量太大,并不适宜用来做教程。因此使用Win32的API创建窗口。程序的入口函数是WinMain(),其中调用了CreateWindow()创建了显示视频的窗口。此外,程序中的消息循环使用的是PeekMessage()而不是GetMessage()。GetMessage()获取消息后,将消息从系统中移除,当系统无消息时,会等待下一条消息,是阻塞函数。而函数PeekMesssge()是以查看的方式从系统中获取消息,可以不将消息从系统中移除(相当于“偷看”消息),是非阻塞函数;当系统无消息时,返回FALSE,继续执行后续代码。使用PeekMessage()的好处是可以保证每隔40ms可以显示下一帧画面。

运行结果

不论选择读取哪个格式的文件,程序的最终输出效果都是一样的,如下图所示。

 

下载

代码位于“Simplest Media Play”中

SourceForge项目地址:https://sourceforge.net/projects/simplestmediaplay/
CSDN下载地址:http://download.csdn.net/detail/leixiaohua1020/8054395

上述工程包含了使用各种API(Direct3D,OpenGL,GDI,DirectSound,SDL2)播放多媒体例子。其中音频输入为PCM采样数据。输出至系统的声卡播放出来。视频输入为YUV/RGB像素数据。输出至显示器上的一个窗口播放出来。
通过本工程的代码初学者可以快速学习使用这几个API播放视频和音频的技术。
一共包括了如下几个子工程:
simplest_audio_play_directsound:  使用DirectSound播放PCM音频采样数据。
simplest_audio_play_sdl2:  使用SDL2播放PCM音频采样数据。
simplest_video_play_direct3d:  使用Direct3D的Surface播放RGB/YUV视频像素数据。
simplest_video_play_direct3d_texture:使用Direct3D的Texture播放RGB视频像素数据。
simplest_video_play_gdi:  使用GDI播放RGB/YUV视频像素数据。
simplest_video_play_opengl:  使用OpenGL播放RGB/YUV视频像素数据。
simplest_video_play_opengl_texture: 使用OpenGL的Texture播放YUV视频像素数据。
simplest_video_play_sdl2:  使用SDL2播放RGB/YUV视频像素数据。

时间: 2024-04-27 08:45:43

最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)的相关文章

最简单的视音频播放示例7:SDL2播放RGB/YUV

本文记录SDL播放视频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API用于播放视频:封装了DirectSound这类的API用于播放音频.因为SDL的编写目的就是简化视音频播放的开发难度,所以使用SDL播放视频(YUV/RGB)和音频(PCM)数据非常的容易.下文记录一下使用SDL播放视频数据的技术.   SDL简介 SDL(Simple DirectMedia La

最简单的视音频播放示例5:OpenGL播放RGB/YUV

本文记录OpenGL播放视频的技术.OpenGL是一个和Direct3D同一层面的技术.相比于Direct3D,OpenGL具有跨平台的优势.尽管在游戏领域,DirectX的影响力已渐渐超越OpenGL并被大多数PC游戏开发商所采用,但在专业高端绘图领域,OpenGL因为色彩准确,仍然是不能被取代的主角. OpenGL简介 从网上搜集了一些有关OpenGL简介方面的知识,在这里列出来.开放图形库(英语:Open Graphics Library,缩写为OpenGL)是个定义了一个跨编程语言.跨平

最简单的视音频播放示例6:OpenGL播放YUV420P(通过Texture,使用Shader)

本文记录OpenGL播放视频的技术.上一篇文章中,介绍了一种简单的使用OpenGL显示视频的方式.但是那还不是OpenGL显示视频技术的精髓.和Direct3D一样,OpenGL更好的显示视频的方式也是通过纹理(Texture).本文介绍OpenGL通过纹理的方式显示视频的技术. OpenGL中坐标和Direct3D坐标的不同 OpenGL中的纹理的坐标和Direct3D中的坐标是不一样的. 在Direct3D中.纹理坐标如下图所示.取值是0到1.坐标系原点在左上角. 物体表面坐标如下图所示.取

最简单的视音频播放示例1:总述

前言 最近研究了一下Windows平台下的视音频播放的技术.在Windows平台下的视频播放技术主要有以下三种:GDI,Direct3D和OpenGL:音频播放技术主要是DirectSound.这些技术属于比较底层的技术,因此使用起来相对来说还是比较复杂的.我在学习的过程中也发现这一领域一直缺少比较简单直观的示例程序,因此打算做些示例程序,同时写一些相关的文章,方便这一领域的人学习相关的知识. 打算重点记录一下视频播放的技术.之前的研究一直集中于视频的编解码方面的技术,而很少接触到视频播放显示方

最简单的视音频播放示例9:SDL2播放PCM

本文记录SDL播放音频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API用于播放视频:封装了DirectSound这类的API用于播放音频.因为SDL的编写目的就是简化视音频播放的开发难度,所以使用SDL播放视频(YUV/RGB)和音频(PCM)数据非常的容易. SDL简介 SDL(Simple DirectMedia Layer)是一套开放源代码的跨平台多媒体开发库,

最简单的视音频播放示例2:GDI播放YUV, RGB

前一篇文章对"Simplest Media Play"工程作了概括性介绍.后续几篇文章打算详细介绍每个子工程中的几种技术.在记录Direct3D,OpenGL这两种相对复杂的技术之前,打算先记录一种和它们属于同一层面的的简单的技术--GDI作为热身. GDI简介 下面这段文字摘自维基百科: 图形设备接口(Graphics Device Interface或Graphical Device Interface,缩写GDI),是微软公司视窗操作系统(Microsoft Windows)的三

最简单的视音频播放示例8:DirectSound播放PCM

本文记录DirectSound播放音频的技术.DirectSound是Windows下最常见的音频播放技术.目前大部分的音频播放应用都是通过DirectSound来播放的.本文记录一个使用DirectSound播放PCM的例子.注:一位仁兄已经提醒我DirectSound已经计划被XAudio2取代了.后来考证了一下发现确有此事.因此在下次更新中考虑加入XAudio2播放PCM的例子.本文仍然记录一下DirectSound这位"元老".   DirectSound简介 DirectSo

HTML5视音频标签参考

本文将介绍HTML5中的视音频标签和对应的DOM对象.是相关资料的中文化版本,可以作为编写相关应用的简易中文参考手册. 一些约定 所有浏览器:指支持HTML5的常见桌面浏览器,包括IE9+.Firefox3.5+.Chrome3.0+.Oprae10.5+.Safari3.0+等等,以及常见的移动平台浏览器,包括Firefox3.5+.Chrome3.0+.Safari3.0+.此外也包括同这些浏览器采用相同内核的一系列再包装版本,如国内很多的浏览器发行版. 更新检测的浏览器版本为(2016.1

[总结]FFMPEG视音频编解码零基础学习方法--转

ffmpeg编解码学习   目录(?)[-] ffmpeg程序的使用ffmpegexeffplayexeffprobeexe 1 ffmpegexe 2 ffplayexe 3 ffprobeexe ffmpeg库的使用视频播放器 1 ffmpeg库的配置 2 最简单的视频播放器 3 相关结构体的研究 ffmpeg库的使用音频播放器 1 最简单的音频播放器 ffmpeg库的使用一个真正的播放器ffplay 1 真正的播放器 ffmpeg库的使用编码 1 编码 2 转码 ffmpeg源代码分析 F